cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A005172 Number of labeled rooted trees of subsets of an n-set.

Original entry on oeis.org

1, 4, 32, 416, 7552, 176128, 5018624, 168968192, 6563282944, 288909131776, 14212910809088, 772776684683264, 46017323176296448, 2978458881388183552, 208198894960190160896, 15631251601179130462208, 1254492810303112820555776, 107174403941451434687463424, 9711022458989438255300083712
Offset: 1

Views

Author

Keywords

Comments

Each node is a subset of the labeled set {1,...,n}. If the subset node is empty, it must have at least two children.
John W. Layman observes that this is the Stirling transform of A005264.

Examples

			x + 4*x^2 + 32*x^3 + 416*x^4 + 7552*x^5 + 176128*x^6 + 5018624*x^7 + ...
D^3(1) = 32*(12*x^2+28*x+13)/(2*x-1)^6. Evaluated at x = 0 this gives a(4) = 416.
From _Peter Bala_, Sep 06 2011: (Start)
a(3) = 32: The 32 increasing plane trees on 3 vertices with vertices of outdegree k coming in 2^(k+1) colors are
.
           1(x4 colors)      1(x8 colors)      1(x8 colors)
           |                / \               / \
           2(x4 colors)    2   3             3   2
           |
           3
.
  Totals: 16        +        8        +        8     = 32.   (End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.26.

Crossrefs

See A225170 for another version.

Programs

  • Maple
    with(combinat); A005172 := n -> add(eulerian2(n-1,k)*2^(2*n-k-2),k=0..n-1): seq(A005172(n), n=1..16); # Peter Luschny, Nov 10 2012
    A005172_list := proc(len) local A, n; A[1] := 1; for n from 2 to len do
    A[n] := 2*A[n-1] + add(binomial(n,j)*A[j]*A[n-j], j=1..n-1) od:
    convert(A,list) end: A005172_list(19); # Peter Luschny, May 24 2017
  • Mathematica
    max = 16; g[x_] := -1/2 - ProductLog[-E^(-1/2 + x)/2]; Drop[ CoefficientList[ Series[ g[x], {x, 0, max}], x]*Range[0, max]!, 1](* Jean-François Alcover, Nov 17 2011, after 1st e.g.f. *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ -1/2 - ProductLog[ -Exp[ -1/2 + z] / 2], {z, 0, n}]] (* Michael Somos, Jun 07 2012 *)
    a[1] = 1; a[n_] := (Sum[(n + k - 1)!*Sum[(-1)^j/(k - j)!*Sum[(-1)^i*2^(n - i + j - 1)*StirlingS1[n - i + j - 1, j - i]/((n - i + j - 1)!*i!), {i, 0, j}], {j, 1, k}], {k, 1, n - 1}]);
    Array[a, 20] (* Jean-François Alcover, Jun 24 2018, after Vladimir Kruchinin *)
    Eulerian2[n_, k_] := Eulerian2[n, k] = If[k == 0, 1, If[k == n, 0, Eulerian2[n-1, k] (k + 1) + Eulerian2[n - 1, k - 1] (2n - k - 1)]]; A005172[n_] := Sum[Eulerian2[n - 1, k] 2^(2 n - k - 2), {k, 0, n - 1}]; Table[A005172[n], {n, 19}] (* Peter Luschny, Jun 24 2018 *)
  • Maxima
    a(n):=if n=1 then 1 else (sum((n+k-1)!*sum((-1)^j/(k-j)!*sum((-1)^i*2^(n-i+j-1)*stirling1(n-i+j-1,j-i)/((n-i+j-1)!*i!),i,0,j),j,1,k),k,1,n-1)); /* Vladimir Kruchinin, Jan 30 2012 */
    
  • PARI
    {a(n)=local(A=1+x);for(i=0,n,A=1+intformal(A*(1+A+x*O(x^n))^2));n!*polcoeff(A,n)} \\ Paul D. Hanna, Sep 06 2008
    
  • PARI
    N=66; x='x+O('x^N);
    Q(k)=if(k>N,1,1-2*(k+1)*x-2*x*(k+1)/Q(k+1));
    gf=1/Q(0);  Vec(gf) \\ Joerg Arndt, May 01 2013
  • Sage
    @CachedFunction
    def eulerian2(n, k):
        if k==0: return 1
        elif k==n: return 0
        return eulerian2(n-1, k)*(k+1)+eulerian2(n-1, k-1)*(2*n-k-1)
    A005172 = lambda n: add(eulerian2(n-1,k)*2^(2*n-k-2) for k in (0..n-1))
    [A005172(n) for n in (1..16)]  # Peter Luschny, Nov 10 2012
    

Formula

E.g.f.: -1/2 - LambertW ( - exp( -1/2 + x) / 2 ).
E.g.f.: A(x) = 1 + Integral A(x)*(1 + A(x))^2 dx. - Paul D. Hanna, Sep 06 2008
From Peter Bala, Sep 06 2011: (Start)
The generating function A(x) = x+4*x^2/2!+32*x^3/3!+... satisfies the autonomous differential equation A'(x) = (1+2*A)/(1-2*A) with A(0) = 0. Hence the inverse function A^-1(x) = Integral_{t = 0..x} (1-2*t)/(1+2*t) dt = log(1+2*x)-x.
The expansion of A(x) can be found by inverting the above integral using the method of [Dominici, Theorem 4.1] to arrive at the result a(n) = D^(n-1)(1) evaluated at x = 0, where D denotes the operator g(x) -> d/dx((1+2*x)/(1-2*x)*g(x)). Compare with A032188.
Applying [Bergeron et al., Theorem 1] to the result x = Integral_{t = 0..A(x)} 1/phi(t) dt, where phi(t) = (1+2*t)/(1-2*t) = 1+4*t+8*t^2+16*t^3+32*t^4+... leads to the following combinatorial interpretation for this sequence: a(n) gives the number of plane increasing trees on n vertices where each vertex of outdegree k >= 1 can be colored in 2^(k+1) ways. An example is given below. (End)
a(n) = Sum_{k=1..n-1} (n+k-1)!*Sum_{j=1..k} (-1)^j/(k-j)!*Sum_{i=0..j} (-1)^i* 2^(n-i+j-1)*Stirling1(n-i+j-1,j-i)/((n-i+j-1)!*i!), n>1, a(1)=1. - Vladimir Kruchinin, Jan 30 2012
Let p(n,w) = w*Sum_{k=0..n-1}((-1)^k*E2(n-1,k)*w^k)/(1+w)^(2*n-1), E2 the second-order Eulerian numbers as defined by Knuth, then a(n) = -p(n,-1/2). - Peter Luschny, Nov 10 2012
a(n) ~ (2/(2*log(2)-1))^(n-1/2)*n^(n-1)/exp(n). - Vaclav Kotesovec, Jan 05 2013
G.f.: 1/Q(0), where Q(k)= 1 - 2*(k+1)*x - 2*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 01 2013
a(n) = 2*a(n-1) + Sum_{j=1..n-1} binomial(n,j)*a(j)*a(n-j) for n>1, a(1) = 1. - Peter Luschny, May 24 2017
a(1) = 1; a(n) = n! * [x^n] exp(x + Sum_{k=1..n-1} a(k)*x^k/k!). - Ilya Gutkovskiy, Oct 18 2017

A225171 Triangle read by rows: T(n,k), 1 <= k <= n, is the number of non-degenerate fanout-free Boolean functions of n variables having AND rank k.

Original entry on oeis.org

2, 4, 4, 32, 24, 8, 416, 304, 96, 16, 7552, 5440, 1760, 320, 32, 176128, 125824, 41280, 8000, 960, 64, 5018624, 3566080, 1180928, 237440, 31360, 2688, 128, 168968192, 119614464, 39875584, 8212736, 1146880, 111104, 7168, 256, 6563282944, 4633387008, 1552320512, 325183488, 47104512, 4902912, 365568, 18432, 512
Offset: 1

Views

Author

N. J. A. Sloane, Apr 30 2013

Keywords

Comments

Also the Bell transform of A225170. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 29 2016

Examples

			Triangle begins
2,
4,4,
32,24,8,
416,304,96,16,
7552,5440,1760,320,32,
176128,125824,41280,8000,960,64,
5018624,3566080,1180928,237440,31360,2688,128,
168968192,119614464,39875584,8212736,1146880,111104,7168,256,
...
		

Crossrefs

Columns give A225170 (or A005172), A005756, A224767, A224768.
Row sums are A224766.

Programs

  • Maple
    # Function BellMatrix defined in A264428.
    BellMatrix(n -> `if`(n=0,2,add(combinat:-eulerian2(n, k)*2^(2*n-k), k=0..n)), 9); # Peter Luschny, Jan 29 2016
  • Mathematica
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    M = BellMatrix[If[# == 0, 2, Sum[(#+k)!*Sum[(-1)^j/(k-j)!*Sum[(-1)^i*2^(# - i + j)*StirlingS1[# - i + j, j - i]/((# - i + j)!*i!), {i, 0, j}], {j, 1, k}], {k, 1, #}]]&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
  • PARI
    T(n) = { my(g=serreverse((1 + 2*x - exp(x + O(x*x^n)))/2)); [Vecrev(p/y) | p<-Vec(serlaplace(exp(y*g)-1))] }
    { my(A=T(8)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Mar 28 2025

Formula

Hayes (1976, Theorem 3) gives a recurrence.

Extensions

a(46) onwards from Andrew Howroyd, Mar 28 2025

A224766 Number of non-degenerate fanout-free Boolean functions of n variables using And, Or and Not gates.

Original entry on oeis.org

2, 2, 8, 64, 832, 15104, 352256, 10037248, 337936384, 13126565888, 577818263552, 28425821618176, 1545553369366528, 92034646352592896, 5956917762776367104, 416397789920380321792, 31262503202358260924416, 2508985620606225641111552, 214348807882902869374926848
Offset: 0

Views

Author

N. J. A. Sloane, Apr 30 2013

Keywords

Comments

Apart from initial term and offset, same as A005640, which is the main entry for this sequence.

References

  • J. P. Hayes, Enumeration of fanout-free Boolean functions, J. ACM, 23 (1976), 700-709.

Crossrefs

Programs

  • PARI
    seq(n) = Vec(2*serlaplace(1 - x + serreverse((1 + 2*x - exp(x + O(x*x^n)))/2))) \\ Andrew Howroyd, Mar 28 2025

Formula

a(n) = 2*A005172(n) for n > 0. - Andrew Howroyd, Mar 28 2025

Extensions

Name clarified and a(19) onwards from Andrew Howroyd, Mar 28 2025
Showing 1-3 of 3 results.