A003063
a(n) = 3^(n-1) - 2^n.
Original entry on oeis.org
-1, -1, 1, 11, 49, 179, 601, 1931, 6049, 18659, 57001, 173051, 523249, 1577939, 4750201, 14283371, 42915649, 128878019, 386896201, 1161212891, 3484687249, 10456158899, 31372671001, 94126401611, 282395982049, 847221500579, 2541731610601, 7625329049531, 22876255584049
Offset: 1
Henrik Johansson (Henrik.Johansson(AT)Nexus.SE)
a(3) = 1 because 3^2 - 2^3 = 9 - 8 = 1.
a(4) = 11 because 3^3 - 2^4 = 27 - 16 = 11.
a(5) = 49 because 3^4 - 2^5 = 81 - 32 = 49.
From the third term onward the first differences of
A005173.
Difference between two leftmost columns of
A090888.
Right edge of irregular triangle
A252750.
-
[3^(n-1) -2^n: n in [1..30]]; // G. C. Greubel, Nov 03 2022
-
Table[3^(n-1) - 2^n, {n, 25}] (* Alonso del Arte, Feb 01 2013 *)
LinearRecurrence[{5,-6},{-1,-1},30] (* Harvey P. Dale, Feb 02 2015 *)
-
a(n)=3^(n-1)-2^n \\ Charles R Greathouse IV, Oct 07 2015
-
[3^(n-1) -2^n for n in range(1,31)] # G. C. Greubel, Nov 03 2022
A094262
Triangle read by rows: T(n,k) is the number of rooted trees with k nodes which are disjoint sets of labels with union {1..n}. If a node has an empty set of labels then it must have at least two children.
Original entry on oeis.org
1, 1, 2, 1, 1, 6, 12, 10, 3, 1, 14, 61, 124, 131, 70, 15, 1, 30, 240, 890, 1830, 2226, 1600, 630, 105, 1, 62, 841, 5060, 16990, 35216, 47062, 40796, 22225, 6930, 945, 1, 126, 2772, 25410, 127953, 401436, 836976, 1196532, 1182195, 795718, 349020, 90090, 10395
Offset: 1
Row 5 contains 1,30,240,890,1830,2226,1600,630,105, so the formula generating Stirling2(n+4,n) numbers (A001298) will be the following: 1 + 30*(n-5) + 240*C(n-5,2) + 890*C(n-5,3) + 1830*C(n-5,4) + 2226*C(n-5,5) + 1600*C(n-5,6) + 630*C(n-5,7) + 105*C(n-5,8). For example, taking n = 9 gives Stirling2(13,9) = 359502.
Triangle starts:
1;
1, 2, 1;
1, 6, 12, 10, 3;
1, 14, 61, 124, 131, 70, 15;
1, 30, 240, 890, 1830, 2226, 1600, 630, 105;
...
From _Peter Bala_, Jun 14 2016: (Start)
Connection with row polynomials of A134991:
R(2,z) = (1 + z)^2*z
R(3,z) = (1 + z)^2*(z + 3*z^2)
R(4,z) = (1 + z)^4*(z + 10*z^2 + 15*z^3)
R(5,z) = (1 + z)^5*(z + 25*z^2 + 105*z^3 + 105*z^4). (End)
From _Andrew Howroyd_, Mar 28 2025: (Start)
The T(3,3) = 12 trees up to relabeling have one of the following 3 forms:
{} {1} {1}
/ \ / \ |
{1} {2,3} {2} {3} {2}
|
{3}
(End)
- Andrew Howroyd, Table of n, a(n) for n = 1..2500 (rows 1..50)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions (with Formulas, Graphs and Mathematical Tables), U.S. Dept. of Commerce, National Bureau of Standards, Applied Math. Series 55, 1964, 1046 pages (9th Printing: November 1970) - Combinatorial Analysis, Table 24.4, Stirling Numbers of the Second Kind (author: Francis L. Miksa), p. 835.
- J. Fernando Barbero G., Jesús Salas, Eduardo J. S. Villaseñor, Generalized Stirling permutations and forests: Higher-order Eulerian and Ward numbers, Electronic Journal of Combinatorics 22(3) (2015), #P3.37.
- M. Kazarian, KP hierarchy for Hodge integrals, p. 2, arxiv:0809.3263 [math.AG], 18 Sep 2008. [From _Tom Copeland_, Jun 12 2015]
- F. R. McMorris and T. Zaslavsky, The number of cladistic characters, Math. Biosciences, 54 (1981), 3-10.
- F. R. McMorris and T. Zaslavsky, The number of cladistic characters, Math. Biosciences, 54 (1981), 3-10. [Annotated scanned copy]
- Eric Weisstein's World of Mathematics, Stirling numbers of the 2nd kind.
-
row_poly := n -> (1+z)^(n+1)*add(z^k*add((-1)^(m+k)*binomial(n+k,n+m)*Stirling2(n+m,m), m=0..k), k=0..n): T_row := n -> seq(coeff(row_poly(n),z,j),j=1..2*n+1):
seq(T_row(n),n=0..6); # Peter Luschny, Jun 15 2016
-
Clear[T, q, u]; T[0] = q[1];T[n_] := Sum[m*(u^2*q[m] + 2*u*q[m+1] + q[m+2])*D[T[n-1], q[m]], {m, 1, 2*n+1}]; row[n_] := List @@ Expand[T[n-1]] /. {u -> 1, q[] -> 1}; Table[row[n], {n, 1, 7}] // Flatten (* _Jean-François Alcover, Jun 12 2015 *)
-
T(n)={my(g=serreverse(log(((1+1/y)*x+1)/exp(x + O(x*x^n))))); [Vecrev(p/y) | p<-Vec(serlaplace(g))]}
{ my(A=T(5)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Mar 28 2025
Edited and Name changed by
Peter Bala, Jun 16 2016
Showing 1-2 of 2 results.
Comments