cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A005264 Number of labeled rooted Greg trees with n nodes.

Original entry on oeis.org

1, 3, 22, 262, 4336, 91984, 2381408, 72800928, 2566606784, 102515201984, 4575271116032, 225649908491264, 12187240730230528, 715392567595403520, 45349581052869924352, 3087516727770990992896, 224691760916830871873536
Offset: 1

Views

Author

Keywords

Comments

A rooted Greg tree can be described as a rooted tree with 2-colored nodes where only the black nodes are counted and labeled and the white nodes have at least 2 children. - Christian G. Bower, Nov 15 1999

Examples

			G.f. = x + 3*x^2 + 22*x^3 + 262*x^4 + 4336*x^5 + 91984*x^6 + 2381408*x^7 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Inverse Stirling transform of A005172 (hence corrected and extended). - John W. Layman

Programs

  • Maple
    T := proc(n,k) option remember; if k=0 and (n=0 or n=1) then return(1) fi; if k<0 or k>n then return(0) fi;
    (n-1)*T(n-1,k-1)+(3*n-k-4)*T(n-1,k)-(k+1)*T(n-1,k+1) end:
    A005264 := proc(n) add(T(n,k)*(-1)^k*2^(n-k-1), k=0..n-1) end;
    seq(A005264(n),n=1..17); # Peter Luschny, Nov 10 2012
  • Mathematica
    max = 17; f[x_] := -1/2 - ProductLog[-E^(-1/2)*(x + 1)/2]; Rest[ CoefficientList[ Series[ f[x], {x, 0, max}], x]*Range[0, max]!] (* Jean-François Alcover, May 23 2012, after Peter Bala *)
    a[ n_] := If[ n < 1, 0, n! SeriesCoefficient[ InverseSeries[ Series[ Exp[-x] (1 + 2 x) - 1, {x, 0, n}]], n]]; (* Michael Somos, Jun 07 2012 *)
  • Maxima
    a(n):=if n=1 then 1 else sum((n+k-1)!*sum(1/(k-j)!*sum(1/(l!*(j-l)!)*sum(((-1)^(i+l)*l^i*binomial(l,n+j-i-1)*2^(n+j-i-1))/i!,i,0,n+j-1),l,1,j),j,1,k),k,1,n-1); /* Vladimir Kruchinin, May 04 2012 */
    
  • PARI
    {a(n) = local(A); if( n<1, 0, for( k= 1, n, A += x * O(x^k); A = truncate( (1 + x) * exp(A) - 1 - A) ); n! * polcoeff( A, n))}; /* Michael Somos, Apr 02 2007 */
    
  • PARI
    {a(n) = if( n<1, 0, n! * polcoeff( serreverse( exp( -x + x * O(x^n) ) * (1 + 2*x) - 1), n))}; /* Michael Somos, Mar 26 2011 */
    
  • Sage
    @CachedFunction
    def T(n,k):
        if k==0 and (n==0 or n==1): return 1
        if k<0 or k>n: return 0
        return (n-1)*T(n-1,k-1)+(3*n-k-4)*T(n-1,k)-(k+1)*T(n-1,k+1)
    A005264 = lambda n: add(T(n,k)*(-1)^k*2^(n-k-1) for k in (0..n-1))
    [A005264(n) for n in (1..17)]  # Peter Luschny, Nov 10 2012

Formula

Exponential reversion of A157142 with offset 1. - Michael Somos, Mar 26 2011
The REVEGF transform of the odd numbers [1,3,5,7,9,11,...] is [1, -3, 22, -262, 4336, -91984, 2381408, ...] - N. J. A. Sloane, May 26 2017
E.g.f. A(x) = y satisfies y' = (1 + 2*y) / ((1 - 2*y) * (1 + x)). - Michael Somos, Mar 26 2011
E.g.f. A(x) satisfies (1 + x) * exp(A(x)) = 1 + 2 * A(x).
From Peter Bala, Sep 08 2011: (Start)
A(x) satisfies the separable differential equation A'(x) = exp(A(x))/(1-2*A(x)) with A(0) = 0. Thus the inverse function A^-1(x) = int {t = 0..x} (1-2*t)/exp(t) = exp(-x)*(2*x+1)-1 = x-3*x^2/2!+5*x^3/3!-7*x^4/4!+.... A(x) = -1/2-LambertW(-exp(-1/2)*(x+1)/2).
The expansion of A(x) can be found by inverting the above integral using the method of [Dominici, Theorem 4.1] to arrive at the result a(n) = D^(n-1)(1) evaluated at x = 0, where D denotes the operator g(x) -> d/dx(exp(x)/(1-2*x)*g(x)). Compare with [Dominici, Example 9].
(End)
a(n)=sum(k=1..n-1, (n+k-1)!*sum(j=1..k, 1/(k-j)!*sum(l=1..j, 1/(l!*(j-l)!)* sum(i=0..n+j-1, ((-1)^(i+l)*l^i*binomial(l,n+j-i-1)*2^(n+j-i-1))/i!)))), n>1, a(1)=1. - Vladimir Kruchinin, May 04 2012
Let T(n,k) = 1 if k=0 and (n=0 or n=1); T(n,k) = 0 if k<0 or k>n; and otherwise T(n,k) = (n-1)*T(n-1,k-1)+(3*n-k-4)*T(n-1,k)-(k+1)*T(n-1,k+1). Define polynomials p(n,w) = w^n*sum_{k=0..n-1}(T(n,k)*w^k)/(1+w)^(2*n-1), then a(n) = (-1)^n*p(n,-1/2). - Peter Luschny, Nov 10 2012
a(n) ~ n^(n-1) / (sqrt(2) * exp(n/2) * (2-exp(1/2))^(n-1/2)). - Vaclav Kotesovec, Jul 09 2013
E.g.f.: -W(-(1+x)*exp(-1/2)/2)-1/2 where W is the Lambert W function. - Robert Israel, Mar 28 2017

A048159 Triangle giving a(n,k) = number of (n,k) labeled Greg trees (n >= 2, 0 <= k <= n-2).

Original entry on oeis.org

1, 3, 1, 16, 13, 3, 125, 171, 85, 15, 1296, 2551, 2005, 735, 105, 16807, 43653, 47586, 26950, 7875, 945, 262144, 850809, 1195383, 924238, 412650, 100485, 10395, 4782969, 18689527, 32291463, 31818045, 19235755, 7113645, 1486485, 135135
Offset: 2

Views

Author

Keywords

Comments

An (n,k) Greg tree can be described as a tree with n black nodes and k white nodes where only the black nodes are labeled and the white nodes are of degree at least 3.
Row sums give A005263.

Examples

			Triangle begins
    1;
    3,   1;
   16,  13,   3;
  125, 171,  85,  15;
  ...
		

Crossrefs

Programs

  • Mathematica
    a[n_, 0] := n^(n-2); a[n_ /; n >= 2, k_] /; 0 <= k <= n-2 := a[n, k] = (n+k-3)*a[n-1, k-1] + (2*n+2*k-3)*a[n-1, k] + (k+1)*a[n-1, k+1]; a[n_, k_] = 0; Table[a[n, k], {n, 2, 9}, {k, 0, n-2}] // Flatten (* Jean-François Alcover, Oct 03 2013 *)

Formula

a(n, 0) = n^(n-2), a(n, k) = (n+k-3)*a(n-1, k-1) + (2n+2k-3)*a(n-1, k) + (k+1)*a(n-1, k+1).

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 07 2000

A052300 Number of rooted Greg trees.

Original entry on oeis.org

1, 2, 6, 21, 78, 313, 1306, 5653, 25088, 113685, 523522, 2443590, 11533010, 54949539, 263933658, 1276652682, 6213207330, 30402727854, 149486487326, 738184395770, 3659440942282, 18205043615467, 90856842218506, 454770531433586, 2282393627458496, 11483114908752959
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Comments

A rooted Greg tree can be described as a rooted tree with 2-colored nodes where only the black nodes are counted and the white nodes have at least 2 children.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i)+j-1, j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> `if`(n<1, 0, b(n-1$2)+b(n, n-1)):
    seq(a(n), n=1..40);  # Alois P. Heinz, Jun 22 2018
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[a[i] + j - 1, j] b[n - i j, i - 1], {j, 0, n/i}]]];
    a[n_] := If[n < 1, 0, b[n - 1, n - 1] + b[n, n - 1]];
    a /@ Range[1, 40] (* Jean-François Alcover, Oct 02 2019, after Alois P. Heinz *)

Formula

Satisfies a = EULER(a) + SHIFT_RIGHT(EULER(a)) - a.
a(n) ~ c * d^n / n^(3/2), where d = 5.33997181362574740496306748840603859910694551382103293340704... and c = 0.18146848896221859476228524468003196434835879494225205... - Vaclav Kotesovec, Jun 11 2021

A052303 Number of asymmetric Greg trees.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 1, 4, 12, 42, 137, 452, 1491, 4994, 16831, 57408, 197400, 685008, 2395310, 8437830, 29917709, 106724174, 382807427, 1380058180, 4998370015, 18181067670, 66393725289, 243347195594, 894959868983, 3301849331598, 12217869541117, 45335177297876
Offset: 0

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Comments

A Greg tree can be described as a tree with 2-colored nodes where only the black nodes are counted and the white nodes are of degree at least 3.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(g(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    g:= n-> `if`(n<1, 0, b(n-1$2)+b(n, n-1)) :
    a:= n-> `if`(n=0, 1, g(n)-add(g(j)*g(n-j), j=0..n)):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 22 2018
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[g[i], j] b[n - i j, i - 1], {j, 0, n/i}]]];
    g[n_] := If[n < 1, 0, b[n - 1, n - 1] + b[n, n - 1]];
    a[n_] := If[n == 0, 1, g[n] - Sum[g[j] g[n - j], {j, 0, n}]];
    a /@ Range[0, 40] (* Jean-François Alcover, Apr 28 2020, after Alois P. Heinz *)

Formula

G.f.: 1+B(x)-B(x)^2 where B(x) is g.f. of A052301.

A052302 Number of Greg trees with n black nodes.

Original entry on oeis.org

1, 1, 1, 2, 5, 12, 37, 116, 412, 1526, 5995, 24284, 101619, 434402, 1893983, 8385952, 37637803, 170871486, 783611214, 3625508762, 16906577279, 79395295122, 375217952457, 1783447124452, 8521191260092, 40907997006020, 197248252895597, 954915026282162
Offset: 0

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Comments

A Greg tree can be described as a tree with 2-colored nodes where only the black nodes are counted and the white nodes are of degree at least 3.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(g(i)+j-1, j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    g:= n-> `if`(n<1, 0, b(n-1$2)+b(n, n-1)):
    a:= n-> `if`(n=0, 1, g(n)-add(g(j)*g(n-j), j=0..n)):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 22 2018
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,
        Sum[Binomial[g[i] + j - 1, j]*b[n - i*j, i - 1], {j, 0, n/i}]]];
    g[n_] := If[n < 1, 0, b[n - 1, n - 1] + b[n, n - 1]];
    a[n_] := If[n == 0, 1, g[n] - Sum[g[j]*g[n - j], {j, 0, n}]];
    a /@ Range[0, 40] (* Jean-François Alcover, Jun 11 2021, after Alois P. Heinz *)

Formula

G.f.: 1 + B(x) - B(x)^2 where B(x) is g.f. of A052300.

A031148 Number of series-reduced planted trees with n leaves of 2 colors and no symmetries.

Original entry on oeis.org

2, 1, 2, 5, 14, 43, 138, 455, 1540, 5305, 18546, 65616, 234546, 845683, 3072350, 11235393, 41326470, 152793376, 567518950, 2116666670, 7924062430, 29765741831, 112157686170, 423809991041, 1605622028100
Offset: 1

Views

Author

Keywords

Crossrefs

Essentially the same as A052301. Cf. A000669, A001678, A038075, A050381.

Formula

Doubles (index 2+) under WEIGH transform.
Showing 1-6 of 6 results.