A042977
Triangle T(n,k) read by rows: coefficients of a polynomial sequence occurring when calculating the n-th derivative of Lambert function W.
Original entry on oeis.org
1, -2, -1, 9, 8, 2, -64, -79, -36, -6, 625, 974, 622, 192, 24, -7776, -14543, -11758, -5126, -1200, -120, 117649, 255828, 248250, 137512, 45756, 8640, 720, -2097152, -5187775, -5846760, -3892430, -1651480, -445572, -70560, -5040
Offset: 0
Triangle begins:
n\k | 1 W W^2 W^3 W^4
==================================
1 | 1
2 | -2 -1
3 | 9 8 2
4 | -64 -79 -36 -6
5 | 625 974 622 192 24
...
T(5,2) = -4*(-79) - 9*(-36) + 3*(-6) = 622.
- G. C. Greubel, Table of n, a(n) for the first 75 rows, flattened
- A. F. Beardon, Winding Numbers, Unwinding Numbers, and the Lambert W Function, Computational Methods and Function Theory, 2021.
- George C. Greubel, On Szasz-Mirakyan-Jain Operators preserving exponential functions, arXiv:1805.06968 [math.CA], 2018.
- Roy M. Howard, Schröder Based Series for the Lambert W Function, Curtin Univ. (Australia), ResearchGate (2025). See p. 8. See also On Schröder-Type Series Expansions for the Lambert W Function, AppliedMath (2025) Vol. 5, No. 2, Art. No. 66.
- G. A. Kalugin and D. J. Jeffrey, Unimodal sequences show that Lambert is Bernstein, C. R. Math. Rep. Acad. Sci. Canada Vol. 33 (2) pp. 50-56, 2011; arXiv:1011.5940 [math.CA], 2010.
- Vladimir Kruchinin, Derivation of Bell Polynomials of the Second Kind, arXiv:1104.5065 [math.CO], 2011.
- Eric Weisstein's World of Mathematics, Lambert W-Function
-
# After Vladimir Kruchinin, for 0 <= m <= n:
T := (n, m) -> add(add((-1)^(k+n)*binomial(j,k)*binomial(2*n+1,m-j)*(k+n+1)^(n+j), k=0..j)/j!, j=0..m): seq(seq(T(n, k), k=0..n), n=0..7); # Peter Luschny, Feb 23 2018
-
Table[ Simplify[ (Evaluate[ D[ ProductLog[ z ], {z, n} ] ] /. ProductLog[ z ]->W)*z^n/W^n (1+W)^(2n-1) ], {n, 12} ] // TableForm
Flatten[ Table[ CoefficientList[ Simplify[ (Evaluate[D[ProductLog[z], {z, n}]] /. ProductLog[z] -> W) z^n / W^n (1 + W)^(2 n - 1)], W], {n, 8}]] (* Michael Somos, Jun 07 2012 *)
T[ n_, k_] := If[ n < 1 || k < 0, 0, Coefficient[ Simplify[(Evaluate[D[ProductLog[z], {z, n}]] /. ProductLog[z] -> W) z^n / W^n (1 + W)^(2 n - 1)], W, k]] (* Michael Somos, Jun 07 2012 *)
-
B(n):=(if n=1 then 1/(1+x)*exp(-x) else -n!*sum((sum((-1)^(m-j)*binomial(m,j)*sum((j^(n-i)*binomial(j,i)*x^(m-i))/(n-i)!,i,0,n),j,1,m))*B(m)/m!,m,1,n-1)/(1+x)^n);
a(n):=B(n)*(1+x)^(2*n-1);
/* Vladimir Kruchinin, Apr 07 2011 */
-
a(n):=if n=1 then 1 else (n-1)!*(sum((binomial(n+k-1, n-1)*sum(binomial(k, j)*(x+1)^(n-j-1)*sum(binomial(j, l)*(-1)^(l)*sum((l^(n+j-i-1)*binomial(l, i)*x^(j-i))/(n+j-i-1)!, i, 0, l), l, 1, j), j, 1, k)), k, 1, n-1));
T(n, k):=coeff(ratsimp(a(n)), x, k);
for n: 1 thru 12 do print(makelist(T(n, k), k, 0, n-1));
/* Vladimir Kruchinin, Oct 09 2012 */
T(n,m):=sum(binomial(2*n+1,m-j)*sum(((n+k+1)^(n+j)*(-1)^(n+k))/((j-k)!*k!),k,0,j),j,0,m); /* Vladimir Kruchinin, Feb 20 2018 */
A112493
Triangle read by rows, T(n, k) = Sum_{j=0..n} C(n-j, n-k)*E2(n, j), where E2 are the second-order Eulerian numbers A201637, for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 4, 3, 1, 11, 25, 15, 1, 26, 130, 210, 105, 1, 57, 546, 1750, 2205, 945, 1, 120, 2037, 11368, 26775, 27720, 10395, 1, 247, 7071, 63805, 247555, 460845, 405405, 135135, 1, 502, 23436, 325930, 1939630, 5735730, 8828820, 6756750, 2027025, 1
Offset: 0
Triangle starts:
[1]
[1, 1]
[1, 4, 3]
[1, 11, 25, 15]
[1, 26, 130, 210, 105]
[1, 57, 546, 1750, 2205, 945]
...
The e.g.f. of [0,0,1,7,25,65,...], the k=3 column of A008278, but with offset n=0, is exp(x)*(1*(x^2)/2! + 4*(x^3)/3! + 3*(x^4)/4!).
Third row [1,4,3]: There are three plane increasing trees on 3 vertices. The number of colors are shown to the right of a vertex.
...................................................
....1o.(1+t)...........1o.t*(1+t).....1o.t*(1+t)...
....|................. /.\............/.\..........
....|................ /...\........../...\.........
....2o.(1+t)........2o.....3o......3o....2o........
....|..............................................
....|..............................................
....3o.............................................
...................................................
The total number of trees is (1+t)^2 + t*(1+t) + t*(1+t) = 1+4*t+3*t^2 = R(2,t).
- F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.
- D. Dominici, Nested derivatives: A simple method for computing series expansions of inverse functions. arXiv:math/0501052v2 [math.CA], 2005.
- Wolfdieter Lang, First ten rows.
- MathOverflow, Recursion for row polynomials of A112493, (2025).
- Andrew Elvey Price and Alan D. Sokal, Phylogenetic trees, augmented perfect matchings, and a Thron-type continued fraction (T-fraction) for the Ward polynomials, arXiv:2001.01468 [math.CO], 2020.
-
T := (n, k) -> add(combinat:-eulerian2(n, j)*binomial(n-j, n-k), j=0..n):
seq(seq(T(n, k), k=0..n), n=0..9); # Peter Luschny, Apr 11 2016
-
max = 11; f[x_, t_] := -1 - (1 + t)/t*ProductLog[-t/(1 + t)*Exp[(x - t)/(1 + t)]]; coes = CoefficientList[ Series[f[x, t], {x, 0, max}, {t, 0, max}], {x, t}]* Range[0, max]!; Table[coes[[n, k]], {n, 0, max}, {k, 1, n - 1}] // Flatten (* Jean-François Alcover, Nov 22 2012, from e.g.f. *)
A048160
Triangle giving T(n,k) = number of (n,k) labeled rooted Greg trees (n >= 1, 0<=k<=n-1).
Original entry on oeis.org
1, 2, 1, 9, 10, 3, 64, 113, 70, 15, 625, 1526, 1450, 630, 105, 7776, 24337, 31346, 20650, 6930, 945, 117649, 450066, 733845, 650188, 329175, 90090, 10395, 2097152, 9492289, 18760302, 20925065, 14194180, 5845455, 1351350, 135135, 43046721
Offset: 1
Triangle begins:
1;
2, 1;
9, 10, 3;
64, 113, 70, 15;
...
- C. Flight, How many stemmata?, Manuscripta, 34 (1990), 122-128.
- C. Flight, How many stemmata?, Manuscripta, 34 (1990), 122-128. (Annotated scanned copy)
- C. Flight, Letter to N. J. A. Sloane, Nov 1990
- D. J. Jeffrey, G. A. Kalugin, N. Murdoch, Lagrange inversion and Lambert W, Preprint 2015.
- M. Josuat-Vergès, Derivatives of the tree function, arXiv preprint arXiv:1310.7531 [math.CO], 2013.
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
-
t[n_ /; n >= 1, k_ /; k >= 0] /; 0 <= k <= n-1 := t[n, k] = (n+k-2) t[n-1, k-1] + (2n + 2k - 2)*t[n-1, k] + (k+1) t[n-1, k+1]; t[1, 0] = 1; t[, ] = 0; Flatten[Table[t[n, k], {n, 1, 9}, {k, 0, n-1}]] (* Jean-François Alcover, Jul 20 2011, after formula *)
More terms from Larry Reeves (larryr(AT)acm.org), Apr 07 2000
A075856
Triangle formed from coefficients of the polynomials p(1)=x, p(n+1) = (n + x*(n+1))*p(n) + x*x*(d/dx)p(n).
Original entry on oeis.org
1, 1, 3, 2, 10, 15, 6, 40, 105, 105, 24, 196, 700, 1260, 945, 120, 1148, 5068, 12600, 17325, 10395, 720, 7848, 40740, 126280, 242550, 270270, 135135, 5040, 61416, 363660, 1332100, 3213210, 5045040, 4729725, 2027025
Offset: 1
Triangle begins
1;
1, 3;
2, 10, 15;
6, 40, 105, 105;
24, 196, 700, 1260, 945;
120, 1148, 5068, 12600, 17325, 10395;
...
p(1) = x, p(2) = 3*x^2 + x, p(3) = 15*x^3 + 10*x^2 + 2*x, etc. - _Michael Somos_, Mar 17 2011
- P. Bala, Diagonals of triangles with generating function exp(t*F(x)).
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
- Brian Drake, Ira M. Gessel, and Guoce Xin, Three Proofs and a Generalization of the Goulden-Litsyn-Shevelev Conjecture on a Sequence Arising in Algebraic Geometry, J. of Integer Sequences, Vol. 10 (2007), #07.3.7.
- Dominique Dumont and Armand Ramamonjisoa, Grammaire de Ramanujan et Arbres de Cayley, Electr. J. Combinatorics, Volume 3, Issue 2 (1996) R17 (see page 16).
- H. W. Gould, A Set of Polynomials Associated with the Higher Derivatives of y = x^x, Rocky Mountain J. Math. Volume 26, Number 2 (1996), 615-625.
- M. Josuat-Vergès, Derivatives of the tree function, arXiv preprint arXiv:1310.7531 [math.CO], 2013.
- S. Ramanujan, Notebook entry
- P. W. Shor, Problem 78-6: A combinatorial identity, in Problems and Solutions column, SIAM Review; problem in 20, p. 394 (1978); solution in 21, pp. 258-260 (1979). [N. Sato, Feb 19 2010]
- P. W. Shor, A = B (but not quite); 3-d array with multiple recurrences, MathOverflow, Nov 2010-Nov 2011.
- J. Zeng, A Ramanujan sequence that refines the Cayley formula for trees, manuscript, 1996.
- J. Zeng, A Ramanujan sequence that refines the Cayley formula for trees, Ramanujan J., 3(1999) 1, 45-54.
-
p[1] = x; p[n_] := p[n] = (n - 1 + x*n)*p[n - 1] + x*x*D[p[n - 1], x]; Flatten[Rest[CoefficientList[#1, x]] & /@ Table[p[n], {n, 8}]] (* Jean-François Alcover, May 31 2011 *)
-
{T(n, k) = if( k<1 || nMichael Somos, Mar 17 2011 */
A181415
Irregular triangle a(n,k) = A049009(n,k)/n, read by rows 1<=k<=A000041(n).
Original entry on oeis.org
1, 1, 1, 1, 6, 2, 1, 12, 9, 36, 6, 1, 20, 40, 120, 180, 240, 24, 1, 30, 75, 50, 300, 1200, 300, 1200, 2700, 1800, 120, 1, 42, 126, 210, 630, 3150, 2100, 3150, 4200, 25200, 12600, 12600, 37800, 15120, 720, 1, 56, 196, 392, 245, 1176, 7056, 11760, 8820, 11760, 11760, 88200
Offset: 1
Row three is calculated as follows:
( 3 18 6) divided by (3 3 3) yielding (1 6 2)
1;
1,1;
1,6,2;
1,12,9,36,6;
1,20,40,120,180,240,24;
1,30,75,50,300,1200,300,1200,2700,1800,120;
1,42,126,210,630,3150,2100,3150,4200,25200,12600,12600,37800,15120,720;
A217922
Triangle read by rows: labeled trees counted by improper edges.
Original entry on oeis.org
1, 1, 2, 1, 6, 7, 3, 24, 46, 40, 15, 120, 326, 430, 315, 105, 720, 2556, 4536, 4900, 3150, 945, 5040, 22212, 49644, 70588, 66150, 38115, 10395, 40320, 212976, 574848, 1011500, 1235080, 1032570, 540540, 135135
Offset: 1
Triangle begins:
\ k 0....1....2....3....4......
n
1 |..1
2 |..1
3 |..2....1
4 |..6....7....3
5 |.24...46...40....15
6 |120..326..430...315...105
T(4,2) = 3 because we have 1->3->4->2, 1->4->2->3, 1->4->3->2, in each of which the last 2 edges are improper.
- G. C. Greubel, Rows n = 1..50 of the irregular triangle, flattened
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013-2014.
- William Y. C. Chen, Amy M. Fu, and Elena L. Wang, A Grammatical Calculus for the Ramanujan Polynomials, arXiv:2506.01649 [math.CO], 2025. See p. 3.
- Dominique Dumont and Armand Ramamonjisoa, Grammaire de Ramanujan et Arbres de Cayley, Electr. J. Combinatorics, Volume 3, Issue 2 (1996) R17 (see page 17).
- Matthieu Josuat-Vergès, Derivatives of the tree function, arXiv preprint arXiv:1310.7531 [math.CO], 2013.
- Lucas Randazzo, Arboretum for a generalization of Ramanujan polynomials, arXiv:1905.02083 [math.CO], 2019.
- Jiang Zeng, A Ramanujan sequence that refines the Cayley formula for trees, Ramanujan Journal 3 (1999) 1, 45-54, [DOI]
-
function T(n,k) // T = A217922
if k lt 0 or k gt n-2 then return 0;
elif k eq 0 then return Factorial(n-1);
else return (n-1)*T(n-1,k) + (n+k-3)*T(n-1,k-1);
end if;
end function;
[1] cat [T(n,k): k in [0..n-2], n in [2..12]]; // G. C. Greubel, Jan 10 2025
-
T[n_, k_]:= T[n,k]= If[k<0 || k>n-2, 0, If[k==0, (n-1)!, (n-1)*T[n-1,k] + (n+k-3)*T[n-1, k-1]]];
Join[{1}, Table[T[n,k], {n,12}, {k,0,n-2}]//Flatten] (* modified by G. C. Greubel, May 07 2019 *)
-
def T(n, k):
if k==0: return factorial(n-1)
elif (k<0 or k > n-2): return 0
else: return (n-1)*T(n-1, k) + (n+k-3)* T(n-1, k-1)
flatten([1] + [[T(n, k) for k in (0..n-2)] for n in (2..12)]) # G. C. Greubel, May 07 2019
Showing 1-6 of 6 results.
Comments