A112493
Triangle read by rows, T(n, k) = Sum_{j=0..n} C(n-j, n-k)*E2(n, j), where E2 are the second-order Eulerian numbers A201637, for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 4, 3, 1, 11, 25, 15, 1, 26, 130, 210, 105, 1, 57, 546, 1750, 2205, 945, 1, 120, 2037, 11368, 26775, 27720, 10395, 1, 247, 7071, 63805, 247555, 460845, 405405, 135135, 1, 502, 23436, 325930, 1939630, 5735730, 8828820, 6756750, 2027025, 1
Offset: 0
Triangle starts:
[1]
[1, 1]
[1, 4, 3]
[1, 11, 25, 15]
[1, 26, 130, 210, 105]
[1, 57, 546, 1750, 2205, 945]
...
The e.g.f. of [0,0,1,7,25,65,...], the k=3 column of A008278, but with offset n=0, is exp(x)*(1*(x^2)/2! + 4*(x^3)/3! + 3*(x^4)/4!).
Third row [1,4,3]: There are three plane increasing trees on 3 vertices. The number of colors are shown to the right of a vertex.
...................................................
....1o.(1+t)...........1o.t*(1+t).....1o.t*(1+t)...
....|................. /.\............/.\..........
....|................ /...\........../...\.........
....2o.(1+t)........2o.....3o......3o....2o........
....|..............................................
....|..............................................
....3o.............................................
...................................................
The total number of trees is (1+t)^2 + t*(1+t) + t*(1+t) = 1+4*t+3*t^2 = R(2,t).
- F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.
- D. Dominici, Nested derivatives: A simple method for computing series expansions of inverse functions. arXiv:math/0501052v2 [math.CA], 2005.
- Wolfdieter Lang, First ten rows.
- MathOverflow, Recursion for row polynomials of A112493, (2025).
- Andrew Elvey Price and Alan D. Sokal, Phylogenetic trees, augmented perfect matchings, and a Thron-type continued fraction (T-fraction) for the Ward polynomials, arXiv:2001.01468 [math.CO], 2020.
-
T := (n, k) -> add(combinat:-eulerian2(n, j)*binomial(n-j, n-k), j=0..n):
seq(seq(T(n, k), k=0..n), n=0..9); # Peter Luschny, Apr 11 2016
-
max = 11; f[x_, t_] := -1 - (1 + t)/t*ProductLog[-t/(1 + t)*Exp[(x - t)/(1 + t)]]; coes = CoefficientList[ Series[f[x, t], {x, 0, max}, {t, 0, max}], {x, t}]* Range[0, max]!; Table[coes[[n, k]], {n, 0, max}, {k, 1, n - 1}] // Flatten (* Jean-François Alcover, Nov 22 2012, from e.g.f. *)
A054589
Table related to labeled rooted trees, cycles and binary trees.
Original entry on oeis.org
1, 1, 1, 2, 4, 3, 6, 18, 25, 15, 24, 96, 190, 210, 105, 120, 600, 1526, 2380, 2205, 945, 720, 4320, 13356, 26488, 34650, 27720, 10395, 5040, 35280, 128052, 305620, 507430, 575190, 405405, 135135
Offset: 1
Triangle begins:
{1},
{1, 1},
{2, 4, 3},
{6, 18, 25, 15},
...
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013-2014.
- William Y. C. Chen, Amy M. Fu, and Elena L. Wang, A Grammatical Calculus for the Ramanujan Polynomials, arXiv:2506.01649 [math.CO], 2025. See p. 3.
- William Y. C. Chen, Larry X. W. Wang, and Arthur L. B. Yang, Recurrence Relations for Strongly q-Log-Convex Polynomials, arXiv:0806.3641v1 [math.CO], 2008.
- Diego Dominici, Nested derivatives: A simple method for Computing series expansions of inverse functions. arXiv:math/0501052v2 [math.CA], 2005.
- Brian Drake, An inversion theorem for labeled trees and some limits of areas under lattice paths, A dissertation presented to the Faculty of the Graduate School of Arts and Sciences of Brandeis University.
- Dominique Dumont and Armand Ramamonjisoa, Grammaire de Ramanujan et Arbres de Cayley, Electr. J. Combinatorics, Volume 3, Issue 2 (1996) R17 (see page 16).
- D. J. Jeffrey, G. A. Kalugin, and N. Murdoch, Lagrange inversion and Lambert W, Preprint 2015.
- Matthieu Josuat-Vergès, Derivatives of the tree function, arXiv preprint arXiv:1310.7531 [math.CO], 2013.
- Peter W. Shor, A new proof of Cayley's formula for counting labeled trees, J. Combin. Theory Ser. A 71 (1995), no. 1, 154-158.
- Jiang Zeng, A Ramanujan sequence that refines the Cayley formula for trees, Ramanujan J., 3(1999) 1, 45-54.
-
p[1] = 1; p[n_] := p[n] = Expand[x^2*D[p[n-1], x] + (n-1)(1+x)p[n-1]]; Flatten[ Table[ CoefficientList[ p[n], x], {n, 1, 8}]] (* Jean-François Alcover, Jul 22 2011 *)
Clear[a];
a[1, 0] = 1;
a[n_, k_] /; k < 0 || k >= n := 0
a[n_, k_] /; 0 <= k <= n - 1 :=
a[n, k] = (n - 1) a[n - 1, k] + (n + k - 2) a[n - 1, k - 1]
Table[a[n, k], {n, 20}, {k, 0, n - 1}] (* David Callan, Oct 14 2012 *)
A185164
Coefficients of a set of polynomials associated with the derivatives of x^x.
Original entry on oeis.org
1, 1, 2, 3, 6, 10, 24, 40, 15, 120, 196, 105, 720, 1148, 700, 105, 5040, 7848, 5068, 1260, 40320, 61416, 40740, 12600, 945, 362880, 541728, 363660, 126280, 17325, 3628800, 5319072, 3584856, 1332100, 242550, 10395, 39916800, 57545280, 38764440, 15020720, 3213210, 270270
Offset: 2
Triangle begins
n\k.|.....1.....2.....3.....4
= = = = = = = = = = = = = = =
..2.|.....1
..3.|.....1
..4.|.....2.....3
..5.|.....6....10
..6.|....24....40....15
..7.|...120...196...105
..8.|...720..1148...700...105
..9.|..5040..7848..5068..1260
...
Fourth derivative of x^x:
x^(-x)*(d/dx)^4(x^x) = (1+log(x))^4 + C(4,2)/x^2*(1+log(x))^2*x - C(4,3)/x^3*(1+log(x)) + C(4,4)/x^4*(2*x + 3*x^2).
Example of recurrence relation for table entries:
T(7,2) = 4*T(6,2) + 6*T(5,1) = 4*40 + 6*6 = 196.
-
T[2,1]:= 1:
for n from 3 to 15 do
for k from 1 to floor(n/2) do
T[n,k]:= (n-1-k)*`if`(k<= floor((n-1)/2),T[n-1,k],0) + `if`(k>=2 and k-1 <= floor((n-2)/2),(n-1)*T[n-2,k-1],0)
od od:
seq(seq(T[n,k],k=1..floor(n/2)),n=2..15); # Robert Israel, Jan 13 2016
-
m = 14; F = Exp[t (x + (1-x) Log[1-x])];
cc = CoefficientList[# + O[t]^m, t]& /@ CoefficientList[F + O[x]^m, x]* Range[0, m - 1]!;
Rest /@ Drop[cc, 2] (* Jean-François Alcover, Jun 26 2019 *)
-
# uses[bell_transform from A264428]
# Computes the full triangle for n>=0 and 0<=k<=n.
def A185164_row(n):
g = lambda k: factorial(k-1) if k>0 else 0
s = [g(k) for k in (0..n)]
return bell_transform(n, s)
[A185164_row(n) for n in (0..10)] # Peter Luschny, Jan 13 2016
A209937
E.g.f. A(x) satisfies: A( x - Sum_{n>=2} x^n/(n*(n-1)/2) ) = x.
Original entry on oeis.org
1, 2, 14, 164, 2692, 56832, 1466656, 44735392, 1574507104, 62807331520, 2800211567936, 137988945383808, 7447519816062848, 436913348544200192, 27682538499602786816, 1883880221782019929088, 137046014280583363879936, 10612885049611654523670528
Offset: 1
E.g.f.: A(x) = x + 2*x^2/2! + 14*x^3/3! + 164*x^4/4! + 2692*x^5/5! + 56832*x^6/6! + 1466656*x^7/7! + 44735392*x^8/8! +...
Let R(x) be the series reversion of e.g.f. A(x), then R(x) begins:
R(x) = x - x^2/1 - x^3/3 - x^4/6 - x^5/10 - x^6/15 - x^7/21 - x^8/28 -...
...
Compare to the series reversion of the function W(x) defined by:
W(x) = x + x^2/2! + 2^2*x^3/3! + 3^3*x^4/4! + 4^4*x^5/5! + 5^5*x^6/6! +...
where W(x - x^2/2 - x^3/6 - x^4/12 - x^5/20 - x^6/30 - x^7/42 -...) = x.
-
A209937_list := proc(len) local A, n; A[1] := 1; for n from 2 to len do
A[n] := (n-2)*A[n-1] + add(binomial(n,j)*A[j]*A[n-j], j=1..n-1) od:
convert(A,list) end: A209937_list(18); # Peter Luschny, May 24 2017
-
Rest[CoefficientList[InverseSeries[Series[-x-2*(1-x)*Log[1-x], {x, 0, 20}], x],x]*Range[0, 20]!] (* Vaclav Kotesovec, Jan 23 2014 *)
-
{a(n)=n!*polcoeff(serreverse(x-sum(m=2, n, x^m/(m*(m-1)/2)) +x*O(x^n)), n)}
-
{a(n)=n!*polcoeff(serreverse(-x-2*(1-x)*log(1-x +x*O(x^n))), n)}
for(n=1, 25, print1(a(n), ", "))
-
/* From a formula of Michael Somos for triangle A075856: */
{A075856(n, k)=if(k<1|nA075856(n-1,k)+(n+k-1)*A075856(n-1,k-1)))}
{a(n)=if(n<1,0,if(n==1,1,sum(k=1,n-1,A075856(n-1, k)*2^k)))}
for(n=1,20,print1(a(n),", "))
A217922
Triangle read by rows: labeled trees counted by improper edges.
Original entry on oeis.org
1, 1, 2, 1, 6, 7, 3, 24, 46, 40, 15, 120, 326, 430, 315, 105, 720, 2556, 4536, 4900, 3150, 945, 5040, 22212, 49644, 70588, 66150, 38115, 10395, 40320, 212976, 574848, 1011500, 1235080, 1032570, 540540, 135135
Offset: 1
Triangle begins:
\ k 0....1....2....3....4......
n
1 |..1
2 |..1
3 |..2....1
4 |..6....7....3
5 |.24...46...40....15
6 |120..326..430...315...105
T(4,2) = 3 because we have 1->3->4->2, 1->4->2->3, 1->4->3->2, in each of which the last 2 edges are improper.
- G. C. Greubel, Rows n = 1..50 of the irregular triangle, flattened
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013-2014.
- William Y. C. Chen, Amy M. Fu, and Elena L. Wang, A Grammatical Calculus for the Ramanujan Polynomials, arXiv:2506.01649 [math.CO], 2025. See p. 3.
- Dominique Dumont and Armand Ramamonjisoa, Grammaire de Ramanujan et Arbres de Cayley, Electr. J. Combinatorics, Volume 3, Issue 2 (1996) R17 (see page 17).
- Matthieu Josuat-Vergès, Derivatives of the tree function, arXiv preprint arXiv:1310.7531 [math.CO], 2013.
- Lucas Randazzo, Arboretum for a generalization of Ramanujan polynomials, arXiv:1905.02083 [math.CO], 2019.
- Jiang Zeng, A Ramanujan sequence that refines the Cayley formula for trees, Ramanujan Journal 3 (1999) 1, 45-54, [DOI]
-
function T(n,k) // T = A217922
if k lt 0 or k gt n-2 then return 0;
elif k eq 0 then return Factorial(n-1);
else return (n-1)*T(n-1,k) + (n+k-3)*T(n-1,k-1);
end if;
end function;
[1] cat [T(n,k): k in [0..n-2], n in [2..12]]; // G. C. Greubel, Jan 10 2025
-
T[n_, k_]:= T[n,k]= If[k<0 || k>n-2, 0, If[k==0, (n-1)!, (n-1)*T[n-1,k] + (n+k-3)*T[n-1, k-1]]];
Join[{1}, Table[T[n,k], {n,12}, {k,0,n-2}]//Flatten] (* modified by G. C. Greubel, May 07 2019 *)
-
def T(n, k):
if k==0: return factorial(n-1)
elif (k<0 or k > n-2): return 0
else: return (n-1)*T(n-1, k) + (n+k-3)* T(n-1, k-1)
flatten([1] + [[T(n, k) for k in (0..n-2)] for n in (2..12)]) # G. C. Greubel, May 07 2019
A239098
Triangle read by rows: T(0,0)=1; T(m,0)=0; otherwise T(m,n) = (m-1)*T(m-1,n)+(m-1+n)*T(m-1,n-1).
Original entry on oeis.org
1, 0, 1, 0, 1, 3, 0, 2, 10, 15, 0, 6, 40, 105, 105, 0, 24, 196, 700, 1260, 945, 0, 120, 1148, 5068, 12600, 17325, 10395, 0, 720, 7848, 40740, 126280, 242550, 270270, 135135, 0, 5040, 61416, 363660, 1332100, 3213210, 5045040, 4729725, 2027025, 0, 40320, 541728, 3584856, 15020720, 43022980, 85345260, 113513400, 91891800, 34459425
Offset: 0
Triangle begins:
1,
0, 1,
0, 1, 3,
0, 2, 10, 15,
0, 6, 40, 105, 105,
0, 24, 196, 700, 1260, 945,
0, 120, 1148, 5068, 12600, 17325, 10395,
0, 720, 7848, 40740, 126280, 242550, 270270, 135135,
...
- P. W. Shor, Problem 78-6: A combinatorial identity, in Problems and Solutions column, SIAM Review; problem in 20, p. 394 (1978); solution in 21, pp. 258-260 (1979).
-
T:=proc(m,n) option remember;
if (m=0) and (n=0) then 1;
elif (m=0) or (n=0) then 0;
else (m-1)*T(m-1,n)+(m-1+n)*T(m-1,n-1); fi; end;
M:=20;
for m from 0 to M do
lprint([seq(T(m,n),n=0..m)]); od:
Showing 1-6 of 6 results.
Comments