cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A112493 Triangle read by rows, T(n, k) = Sum_{j=0..n} C(n-j, n-k)*E2(n, j), where E2 are the second-order Eulerian numbers A201637, for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 11, 25, 15, 1, 26, 130, 210, 105, 1, 57, 546, 1750, 2205, 945, 1, 120, 2037, 11368, 26775, 27720, 10395, 1, 247, 7071, 63805, 247555, 460845, 405405, 135135, 1, 502, 23436, 325930, 1939630, 5735730, 8828820, 6756750, 2027025, 1
Offset: 0

Views

Author

Wolfdieter Lang, Oct 14 2005

Keywords

Comments

Previous name was: Coefficient triangle of polynomials used for e.g.f.s of Stirling2 diagonals.
For the o.g.f. of diagonal k of the Stirling2 triangle one has a similar result. See A008517 (second-order Eulerian triangle).
A(m,x), the o.g.f. for column m, satisfies the recurrence A(m,x) = x*(x*(d/dx)A(m-1,x) + m*A(m-1,x))/(1-(m+1)*x), for m >= 1 and A(0,x) = 1/(1-x).
The e.g.f. for the sequence in column k+1, k >= 0, of A008278, i.e., for the diagonal k >= 0 of the Stirling2 triangle A048993, is exp(x)*Sum_{m=0..k} a(k,m)*(x^(m+k))/(m+k)!.
It appears that the triangles in this sequence and A124324 have identical columns, except for shifts. - Jörgen Backelin, Jun 20 2022
A refined version of this triangle is given in A356145, which contains a link providing the precise relationship between A124324 and this entry, confirming Jörgen Backelin's observation above. - Tom Copeland, Sep 24 2022

Examples

			Triangle starts:
  [1]
  [1, 1]
  [1, 4,  3]
  [1, 11, 25,  15]
  [1, 26, 130, 210,  105]
  [1, 57, 546, 1750, 2205, 945]
  ...
The e.g.f. of [0,0,1,7,25,65,...], the k=3 column of A008278, but with offset n=0, is exp(x)*(1*(x^2)/2! + 4*(x^3)/3! + 3*(x^4)/4!).
Third row [1,4,3]: There are three plane increasing trees on 3 vertices. The number of colors are shown to the right of a vertex.
...................................................
....1o.(1+t)...........1o.t*(1+t).....1o.t*(1+t)...
....|................. /.\............/.\..........
....|................ /...\........../...\.........
....2o.(1+t)........2o.....3o......3o....2o........
....|..............................................
....|..............................................
....3o.............................................
...................................................
The total number of trees is (1+t)^2 + t*(1+t) + t*(1+t) = 1+4*t+3*t^2 = R(2,t).
		

Crossrefs

Row sums give A006351(k+1), k>=0.
The column sequences start with A000012 (powers of 1), A000295 (Eulerian numbers), A112495, A112496, A112497.
Antidiagonal sums give A000110.
Cf. A356145.

Programs

  • Maple
    T := (n, k) -> add(combinat:-eulerian2(n, j)*binomial(n-j, n-k), j=0..n):
    seq(seq(T(n, k), k=0..n), n=0..9); # Peter Luschny, Apr 11 2016
  • Mathematica
    max = 11; f[x_, t_] := -1 - (1 + t)/t*ProductLog[-t/(1 + t)*Exp[(x - t)/(1 + t)]]; coes = CoefficientList[ Series[f[x, t], {x, 0, max}, {t, 0, max}], {x, t}]* Range[0, max]!; Table[coes[[n, k]], {n, 0, max}, {k, 1, n - 1}] // Flatten (* Jean-François Alcover, Nov 22 2012, from e.g.f. *)

Formula

a(k, m) = 0 if k < m, a(k, -1):=0, a(0, 0)=1, a(k, m)=(m+1)*a(k-1, m) + (k+m-1)*a(k-1, m-1) else.
From Peter Bala, Sep 30 2011: (Start)
E.g.f.: A(x,t) = -1-((1+t)/t)*LambertW(-(t/(1+t))*exp((x-t)/(1+t))) = x + (1+t)*x^2/2! + (1+4*t+3*t^2)*x^3/3! + .... A(x,t) is the inverse function of (1+t)*log(1+x)-t*x.
A(x,t) satisfies the partial differential equation (1-x*t)*dA/dx = 1 + A + t*(1+t)*dA/dt. It follows that the row generating polynomials R(n,t) satisfy the recurrence R(n+1,t) =(n*t+1)*R(n,t) + t*(1+t)*dR(n,t)/dt. Cf. A054589 and A075856. The polynomials t/(1+t)*R(n,t) are the row polynomials of A134991.
The generating function A(x,t) satisfies the autonomous differential equation dA/dx = (1+A)/(1-t*A). Applying [Bergeron et al., Theorem 1] gives a combinatorial interpretation for the row generating polynomials R(n,t): R(n,t) counts plane increasing trees on n+1 vertices where the non-leaf vertices of outdegree k come in t^(k-1)*(1+t) colors. An example is given below. Cf. A006351, which corresponds to the case t = 1. Applying [Dominici, Theorem 4.1] gives the following method for calculating the row polynomials R(n,t): Let f(x) = (1+x)/(1-x*t). Then R(n,t) = (f(x)*d/dx)^n(f(x)) evaluated at x = 0. (End)
Sum_{j=0..n} T(n-j,j) = A000110(n). - Alois P. Heinz, Jun 20 2022
From Mikhail Kurkov, Apr 01 2025: (Start)
E.g.f.: B(y) = -w/(x*(1+w)) where w = LambertW(-x/(1+x)*exp((y-x)/(1+x))) satisfies the first-order ordinary differential equation (1+x)*B'(y) = B(y)*(1+x*B(y))^2, hence row polynomials are P(n,x) = P(n-1,x) + x*Sum_{j=0..n-1} binomial(n, j)*P(j,x)*P(n-j-1,x) for n > 0 with P(0,x) = 1 (see MathOverflow link).
Conjecture: row polynomials are P(n,x) = Sum_{i=0..n} Sum_{j=0..i} Sum_{k=0..j} (n+i)!*Stirling1(n+j-k,j-k)*x^k*(x+1)^(j-k)*(-1)^(j+k)/((n+j-k)!*(i-j)!*k!). (End)
Conjecture: g.f. satisfies 1/(1 - x - x*y/(1 - 2*x - 2*x*y/(1 - 3*x - 3*x*y/(1 - 4*x - 4*x*y/(1 - 5*x - 5*x*y/(1 - ...)))))) (see A383019 for conjectures about combinatorial interpretation and algorithm for efficient computing). - Mikhail Kurkov, Apr 21 2025

Extensions

New name from Peter Luschny, Apr 11 2016

A054589 Table related to labeled rooted trees, cycles and binary trees.

Original entry on oeis.org

1, 1, 1, 2, 4, 3, 6, 18, 25, 15, 24, 96, 190, 210, 105, 120, 600, 1526, 2380, 2205, 945, 720, 4320, 13356, 26488, 34650, 27720, 10395, 5040, 35280, 128052, 305620, 507430, 575190, 405405, 135135
Offset: 1

Views

Author

F. Chapoton, Apr 14 2000

Keywords

Comments

The left column is (n-1)!, the right column is (2n-3)!!, the total of each row is n^(n-1).
Constant terms of polynomials related to Ramanujan psi polynomials (see Zeng reference).
From Peter Bala, Sep 29 2011: (Start)
Differentiating n times the Lambert function W(x) = Sum_{n>=1} n^(n-1)*x^n/n! with respect to x yields (d/dx)^n W(x) = exp(n*W(x))/(1-W(x))^n*R(n,1/(1-W(x))), where R(n,x) is the n-th row polynomial of this triangle. The first few values are R(1,x) = 1, R(2,x) = 1+x, R(3,x) = 2+4*x+3*x^2. The Ramanujan polynomials R(n,x) are strongly x-log-convex [Chen et al.].
Shor and Dumont-Ramamonjisoa have proved independently that the coefficient of x^k in R(n,x) counts rooted labeled trees on n vertices with k improper edges. Drake, Example 1.7.3, gives another combinatorial interpretation for this triangle as counting a family of labeled trees.
(End)

Examples

			Triangle begins:
  {1},
  {1,  1},
  {2,  4,  3},
  {6, 18, 25, 15},
  ...
		

Crossrefs

Programs

  • Mathematica
    p[1] = 1; p[n_] := p[n] = Expand[x^2*D[p[n-1], x] + (n-1)(1+x)p[n-1]]; Flatten[ Table[ CoefficientList[ p[n], x], {n, 1, 8}]] (* Jean-François Alcover, Jul 22 2011 *)
    Clear[a];
    a[1, 0] = 1;
    a[n_, k_] /; k < 0 || k >= n := 0
    a[n_, k_] /; 0 <= k <= n - 1 :=
    a[n, k] = (n - 1) a[n - 1, k] + (n + k - 2) a[n - 1, k - 1]
    Table[a[n, k], {n, 20}, {k, 0, n - 1}] (* David Callan, Oct 14 2012 *)

Formula

The polynomials p_n = Sum a[n, k]x^k satisfy p_1=1 and p_(n+1) = x*x*dp_n/dx+n*(1+x)*p_n.
From Peter Bala, Sep 29 2011: (Start)
E.g.f.: series reversion with respect to x of (1-t+(t-1+x*t)*exp(-x)) = x + (1+t)*x^2/2! + (2+4*t+3*t^2)*x^3/3! + ....
The sequence of shifted row polynomials {p_n(1+t)}n>=1 begins [1,2+t,9+10*t+3*t^2,...]. These are the row polynomials of A048160.
(End)
Let f(x) = exp(x)/(1-t*x). The e.g.f. A(x,t) = x + (1+t)*x^2/2! + (2+4*t+3*t^2)*x^3/3! + ... satisfies the autonomous differential equation dA/dx = f(A). The n-th row polynomial (n>=1) equals D^(n-1)(f(x)) evaluated at x = 0, where D is the operator f(x)*d/dx (apply [Dominici, Theorem 4.1]). - Peter Bala, Nov 09 2011
The polynomials (1+t)^(n-1)*p_n(1/(1+t)) are (up to sign) the row polynomials of A042977. - Peter Bala, Jul 23 2012
Let q_n = Sum_{k>=0} a(n,k)*t^(n-k), with q_0 = 1. (So q_1=t, q_2 = t+t^2, and q_3 = 3*t + 4*t^2 + 2*t^3.) Then Sum_{n>=0} q_n*x^n/n! = t - W((t-1-t^2*x)*exp(t-1)), where W is the Lambert function. - Ira M. Gessel, Jan 06 2012

A185164 Coefficients of a set of polynomials associated with the derivatives of x^x.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 24, 40, 15, 120, 196, 105, 720, 1148, 700, 105, 5040, 7848, 5068, 1260, 40320, 61416, 40740, 12600, 945, 362880, 541728, 363660, 126280, 17325, 3628800, 5319072, 3584856, 1332100, 242550, 10395, 39916800, 57545280, 38764440, 15020720, 3213210, 270270
Offset: 2

Views

Author

Peter Bala, Mar 12 2012

Keywords

Comments

Gould shows that the derivatives of x^x are given by (d/dx)^n(x^x) = (x^x)*Sum_{k = 0..n} (-1)^k*binomial(n,k)*(1 + log(x))^(n-k)*x^(-k)*R(k,x), where R(n,x) is a polynomial in x of degree floor(n/2). The first few values are R(0,x) = 1, R(1,x) = 0, R(2,x) = x, R(3,x) = x and R(4,x) = 2*x + 3*x^2. The coefficients of these polynomials are listed in the table for n >= 2. Gould gives an explicit formula for R(n,x) as a triple sum, and also an expression in terms of the Comtet numbers A008296.
This table read by diagonals gives A075856.

Examples

			Triangle begins
n\k.|.....1.....2.....3.....4
= = = = = = = = = = = = = = =
..2.|.....1
..3.|.....1
..4.|.....2.....3
..5.|.....6....10
..6.|....24....40....15
..7.|...120...196...105
..8.|...720..1148...700...105
..9.|..5040..7848..5068..1260
...
Fourth derivative of x^x:
x^(-x)*(d/dx)^4(x^x) = (1+log(x))^4 + C(4,2)/x^2*(1+log(x))^2*x - C(4,3)/x^3*(1+log(x)) + C(4,4)/x^4*(2*x + 3*x^2).
Example of recurrence relation for table entries:
T(7,2) = 4*T(6,2) + 6*T(5,1) = 4*40 + 6*6 = 196.
		

Crossrefs

Cf. A008296, A075856, A203852 (row sums).

Programs

  • Maple
    T[2,1]:= 1:
    for n from 3 to 15 do
      for k from 1 to floor(n/2) do
        T[n,k]:= (n-1-k)*`if`(k<= floor((n-1)/2),T[n-1,k],0) + `if`(k>=2 and k-1 <= floor((n-2)/2),(n-1)*T[n-2,k-1],0)
    od od:
    seq(seq(T[n,k],k=1..floor(n/2)),n=2..15); # Robert Israel, Jan 13 2016
  • Mathematica
    m = 14; F = Exp[t (x + (1-x) Log[1-x])];
    cc = CoefficientList[# + O[t]^m, t]& /@ CoefficientList[F + O[x]^m, x]* Range[0, m - 1]!;
    Rest /@ Drop[cc, 2] (* Jean-François Alcover, Jun 26 2019 *)
  • Sage
    # uses[bell_transform from A264428]
    # Computes the full triangle for n>=0 and 0<=k<=n.
    def A185164_row(n):
        g = lambda k: factorial(k-1) if k>0 else 0
        s = [g(k) for k in (0..n)]
        return bell_transform(n, s)
    [A185164_row(n) for n in (0..10)] # Peter Luschny, Jan 13 2016

Formula

Recurrence relation: T(n+1,k) = (n - k)*T(n,k) + n*T(n-1,k-1).
The diagonal entries D(n,k) := T(n+k,k) satisfy the recurrence D(n+1,k) = n*D(n,k) + (n + k)*D(n,k-1) so this table read by diagonals is A075856.
E.g.f.: F(x,t) = exp(t*(x + (1 - x)*log(1 - x))) = Sum_{n = 0..oo} R(n,t)*x^n/n! = 1 + t*x^2/2! + t*x^3/3! + (2*t + 3*t^2)*x^4/4! + .... The e.g.f. F(x,t) satisfies the partial differential equation (1 - x)*dF/dx + t*dF/dt = x*t*F.
This gives the recurrence relation for the row generating polynomials: R(n+1,x) = n*R(n,x) - x*d/dx(R(n,x)) + n*x*R(n-1,x) for n >= 1, with initial conditions R(0,x) = 1, R(1,x) = 0.
The e.g.f. for the triangle read by diagonals is given by the series reversion (with respect to x) (x - t*(x + (1 - x)*log(1 - x)))^(-1) = x + t*x^2/2! + (t + 3*t^2)x^3/3! + (2*t + 10*t^2 + 15*t^3)*x^4/4! + ....
Diagonal sums: Sum_{k = 1..n} T(n+k,k) = n^n , n >= 1.
Row sums A203852.
Also the Bell transform of the sequence g(k) = (k-1)! if k>0 else 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 13 2016

Extensions

More terms from Jean-François Alcover, Jun 26 2019

A209937 E.g.f. A(x) satisfies: A( x - Sum_{n>=2} x^n/(n*(n-1)/2) ) = x.

Original entry on oeis.org

1, 2, 14, 164, 2692, 56832, 1466656, 44735392, 1574507104, 62807331520, 2800211567936, 137988945383808, 7447519816062848, 436913348544200192, 27682538499602786816, 1883880221782019929088, 137046014280583363879936, 10612885049611654523670528
Offset: 1

Views

Author

Paul D. Hanna, Mar 15 2012

Keywords

Comments

Compare e.g.f. to the identity: let W(x) = Sum_{n>=1} (n-1)^(n-1)*x^n/n!, then W( x - Sum_{n>=2} x^n/(n*(n-1)) ) = x.

Examples

			E.g.f.: A(x) = x + 2*x^2/2! + 14*x^3/3! + 164*x^4/4! + 2692*x^5/5! + 56832*x^6/6! + 1466656*x^7/7! + 44735392*x^8/8! +...
Let R(x) be the series reversion of e.g.f. A(x), then R(x) begins:
R(x) = x - x^2/1 - x^3/3 - x^4/6 - x^5/10 - x^6/15 - x^7/21 - x^8/28 -...
...
Compare to the series reversion of the function W(x) defined by:
W(x) = x + x^2/2! + 2^2*x^3/3! + 3^3*x^4/4! + 4^4*x^5/5! + 5^5*x^6/6! +...
where W(x - x^2/2 - x^3/6 - x^4/12 - x^5/20 - x^6/30 - x^7/42 -...) = x.
		

Crossrefs

Programs

  • Maple
    A209937_list := proc(len) local A, n; A[1] := 1; for n from 2 to len do
    A[n] := (n-2)*A[n-1] + add(binomial(n,j)*A[j]*A[n-j], j=1..n-1) od:
    convert(A,list) end: A209937_list(18); # Peter Luschny, May 24 2017
  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[-x-2*(1-x)*Log[1-x], {x, 0, 20}], x],x]*Range[0, 20]!] (* Vaclav Kotesovec, Jan 23 2014 *)
  • PARI
    {a(n)=n!*polcoeff(serreverse(x-sum(m=2, n, x^m/(m*(m-1)/2)) +x*O(x^n)), n)}
    
  • PARI
    {a(n)=n!*polcoeff(serreverse(-x-2*(1-x)*log(1-x +x*O(x^n))), n)}
    for(n=1, 25, print1(a(n), ", "))
    
  • PARI
    /* From a formula of Michael Somos for triangle A075856: */
    {A075856(n, k)=if(k<1|nA075856(n-1,k)+(n+k-1)*A075856(n-1,k-1)))}
    {a(n)=if(n<1,0,if(n==1,1,sum(k=1,n-1,A075856(n-1, k)*2^k)))}
    for(n=1,20,print1(a(n),", "))

Formula

E.g.f. A(x) satisfies: A( -x - 2*(1-x)*log(1-x) ) = x.
a(n) = Sum_{k=1..n-1} A075856(n-1,k)*2^k for n>1 with a(1)=1.
a(n) ~ n^(n-1) / (sqrt(2) * (2-exp(1/2))^(n-1/2) * exp(n/2+1/2)). - Vaclav Kotesovec, Jan 23 2014
a(n) = (n-2)*a(n-1) + Sum_{j=1..n-1} binomial(n,j)*a(j)*a(n-j) for n>1, a(1)=1. - Peter Luschny, May 24 2017

A217922 Triangle read by rows: labeled trees counted by improper edges.

Original entry on oeis.org

1, 1, 2, 1, 6, 7, 3, 24, 46, 40, 15, 120, 326, 430, 315, 105, 720, 2556, 4536, 4900, 3150, 945, 5040, 22212, 49644, 70588, 66150, 38115, 10395, 40320, 212976, 574848, 1011500, 1235080, 1032570, 540540, 135135
Offset: 1

Views

Author

David Callan, Oct 14 2012

Keywords

Comments

T(n,k) is the number of labeled trees on [n], rooted at 1, with k improper edges, for n >= 1, k >= 0. See Zeng link for definition of improper edge.

Examples

			Triangle begins:
  \ k  0....1....2....3....4......
  n
  1 |..1
  2 |..1
  3 |..2....1
  4 |..6....7....3
  5 |.24...46...40....15
  6 |120..326..430...315...105
T(4,2) = 3 because we have 1->3->4->2, 1->4->2->3, 1->4->3->2, in each of which the last 2 edges are improper.
		

Crossrefs

Row sums are A000272.

Programs

  • Magma
    function T(n,k) // T = A217922
      if k lt 0 or k gt n-2 then return 0;
      elif k eq 0 then return Factorial(n-1);
      else return (n-1)*T(n-1,k) + (n+k-3)*T(n-1,k-1);
      end if;
    end function;
    [1] cat [T(n,k): k in [0..n-2], n in [2..12]]; // G. C. Greubel, Jan 10 2025
  • Mathematica
    T[n_, k_]:= T[n,k]= If[k<0 || k>n-2, 0, If[k==0, (n-1)!, (n-1)*T[n-1,k] + (n+k-3)*T[n-1, k-1]]];
    Join[{1}, Table[T[n,k], {n,12}, {k,0,n-2}]//Flatten] (* modified by G. C. Greubel, May 07 2019 *)
  • SageMath
    def T(n, k):
        if k==0: return factorial(n-1)
        elif (k<0 or k > n-2): return 0
        else: return (n-1)*T(n-1, k) + (n+k-3)* T(n-1, k-1)
    flatten([1] + [[T(n, k) for k in (0..n-2)] for n in (2..12)]) # G. C. Greubel, May 07 2019
    

Formula

T(n, k) = (n-1)*T(n-1, k) + (n+k-3)*T(n-1, k-1), for 1 <= k <= n-2, with T(n, 0) = (n-1)!. - G. C. Greubel, Jan 10 2025

A239098 Triangle read by rows: T(0,0)=1; T(m,0)=0; otherwise T(m,n) = (m-1)*T(m-1,n)+(m-1+n)*T(m-1,n-1).

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 2, 10, 15, 0, 6, 40, 105, 105, 0, 24, 196, 700, 1260, 945, 0, 120, 1148, 5068, 12600, 17325, 10395, 0, 720, 7848, 40740, 126280, 242550, 270270, 135135, 0, 5040, 61416, 363660, 1332100, 3213210, 5045040, 4729725, 2027025, 0, 40320, 541728, 3584856, 15020720, 43022980, 85345260, 113513400, 91891800, 34459425
Offset: 0

Views

Author

N. J. A. Sloane, Mar 23 2014

Keywords

Comments

If the first column is omitted we get A075856, which has much more information about this triangle.

Examples

			Triangle begins:
1,
0, 1,
0, 1, 3,
0, 2, 10, 15,
0, 6, 40, 105, 105,
0, 24, 196, 700, 1260, 945,
0, 120, 1148, 5068, 12600, 17325, 10395,
0, 720, 7848, 40740, 126280, 242550, 270270, 135135,
...
		

References

  • P. W. Shor, Problem 78-6: A combinatorial identity, in Problems and Solutions column, SIAM Review; problem in 20, p. 394 (1978); solution in 21, pp. 258-260 (1979).

Crossrefs

Cf. A075856.

Programs

  • Maple
    T:=proc(m,n) option remember;
    if (m=0) and (n=0) then 1;
    elif (m=0) or (n=0) then 0;
    else (m-1)*T(m-1,n)+(m-1+n)*T(m-1,n-1); fi; end;
    M:=20;
    for m from 0 to M do
    lprint([seq(T(m,n),n=0..m)]); od:
Showing 1-6 of 6 results.