A005318 Conway-Guy sequence: a(n + 1) = 2a(n) - a(n - floor( 1/2 + sqrt(2n) )).
0, 1, 2, 4, 7, 13, 24, 44, 84, 161, 309, 594, 1164, 2284, 4484, 8807, 17305, 34301, 68008, 134852, 267420, 530356, 1051905, 2095003, 4172701, 8311101, 16554194, 32973536, 65679652, 130828948, 261127540, 521203175, 1040311347, 2076449993, 4144588885, 8272623576
Offset: 0
References
- J. H. Conway and R. K. Guy, Solution of a problem of Erdos, Colloq. Math. 20 (1969), p. 307.
- R. K. Guy, Unsolved Problems in Number Theory, C8.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- M. Wald, Problem 1192, Unequal sums, J. Rec. Math., 15 (No. 2, 1983-1984), pp. 148-149.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3324 (first 301 terms from T. D. Noe)
- Tom Bohman, A sum packing problem of Erdos and the Conway-Guy sequence, Proc. AMS 124, (No. 12, 1996), pp. 3627-3636.
- P. Borwein and M. J. Mossinghoff, Newman Polynomials with Prescribed Vanishing and Integer Sets with Distinct Subset Sums, Math. Comp., 72 (2003), 787-800.
- J. H. Conway & R. K. Guy, Sets of natural numbers with distinct sums, Manuscript.
- R. K. Guy, Letter to N. J. A. Sloane, Apr 1975
- R. K. Guy, Sets of integers whose subsets have distinct sums, pp. 141-154 of Theory and practice of combinatorics. Ed. A. Rosa, G. Sabidussi and J. Turgeon. Annals of Discrete Mathematics, 12. North-Holland 1982.
- R. K. Guy, Sets of integers whose subsets have distinct sums, pp. 141-154 of Theory and practice of combinatorics. Ed. A. Rosa, G. Sabidussi and J. Turgeon. Annals of Discrete Mathematics, 12. North-Holland 1982. (Annotated scanned copy)
- G. Kreweras, Sur quelques problèmes relatifs au vote pondéré [Some problems of weighted voting], Math. Sci. Humaines No. 84 (1983), 45-63.
- G. Kreweras, Alvarez Rodriguez, Miguel-Angel, Pondération entière minimale de N telle que pour tout k toutes les k-parties de N aient des poids distincts, [Minimal integer weighting of N such that for any k all the k-subsets of N have unequal weights] C. R. Acad. Sci. Paris Ser. I Math. 296 (1983), no. 8, 345-347.
- G. Kreweras, Alvarez Rodriguez, Miguel-Angel, Pondération entière minimale de N telle que pour tout k toutes les k-parties de N aient des poids distincts, [Minimal integer weighting of N such that for any k all the k-subsets of N have unequal weights], C. R. Acad. Sci. Paris Ser. I Math. 296 (1983), no. 8, 345-347. (Annotated scanned copy)
- W. F. Lunnon, Integer sets with distinct subset-sums, Math. Comp. 50 (1988), 297-320.
- M. Wald & N. J. A. Sloane, Correspondence and Attachment, 1987
Crossrefs
Programs
-
Haskell
a005318 n = a005318_list !! n a005318_list = 0 : 1 : zipWith (-) (map (* 2) $ tail a005318_list) (map a005318 a083920_list) -- Reinhard Zumkeller, Feb 12 2012
-
Mathematica
a[n_] := a[n] = 2*a[n-1] - a[n - Floor[Sqrt[2]*Sqrt[n-1] + 1/2] - 1]; a[0]=0; a[1]=1; Table[a[n], {n, 0, 33}] (* Jean-François Alcover, May 15 2013 *)
-
PARI
a(n)=if(n<=1,n==1,2*a(n-1)-a(n-1-(sqrtint(8*n-15)+1)\2))
-
PARI
A=[]; /* This is the program above with memoization. */ a(n)=if(n<3, return(n)); if(n>#A, A=concat(A,vector(n-#A)), if(A[n], return(A[n]))); A[n]=2*a(n-1)-a(n-1-(sqrtint(8*n-15)+1)\2) \\ Charles R Greathouse IV, Sep 09 2016
-
Python
from sympy import sqrt, floor def a(n): return n if n<2 else 2*a(n - 1) - a(n - floor(sqrt(2)*sqrt(n - 1) + 1/2) - 1) # Indranil Ghosh, Jun 03 2017
Formula
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Sep 21 2000
Comments