cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A096858 Triangle read by rows in which row n gives the n-set obtained as the differences {b(n)-b(n-i), 0 <= i <= n-1}, where b() = A005318().

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 3, 5, 6, 7, 6, 9, 11, 12, 13, 11, 17, 20, 22, 23, 24, 20, 31, 37, 40, 42, 43, 44, 40, 60, 71, 77, 80, 82, 83, 84, 77, 117, 137, 148, 154, 157, 159, 160, 161, 148, 225, 265, 285, 296, 302, 305, 307, 308, 309, 285, 433, 510, 550, 570, 581, 587, 590, 592, 593, 594
Offset: 1

Views

Author

N. J. A. Sloane, Aug 18 2004

Keywords

Comments

It is conjectured that the triangle has the property that all 2^n subsets of row n have distinct sums. This conjecture was proved by T. Bohman in 1996 - N. J. A. Sloane, Feb 09 2012
It is also conjectured that in some sense this triangle is optimal. See A005318 for further information and additional references.

Examples

			The triangle begins:
{1}
{1,2}
{2,3,4}
{3,5,6,7}
{6,9,11,12,13}
{11,17,20,22,23,24}
{20,31,37,40,42,43,44}
{40,60,71,77,80,82,83,84}
{77,117,137,148,154,157,159,160,161}
{148,225,265,285,296,302,305,307,308,309}
{285,433,510,550,570,581,587,590,592,593,594}
{570,855,1003,1080,1120,1140,1151,1157,1160,1162,1163,1164}
{1120,1690,1975,2123,2200,2240,2260,2271,2277,2280,2282,2283,2284}
{2200,3320,3890,4175,4323,4400,4440,4460,4471,4477,4480,4482,4483,4484}
{4323,6523,7643,8213,8498,8646,8723,8763,8783,8794,8800,8803,8805,8806,8807}
		

References

  • J. H. Conway and R. K. Guy, Solution of a problem of Erdős, Colloq. Math. 20 (1969), p. 307.
  • R. K. Guy, Sets of integers whose subsets have distinct sums, pp. 141-154 of Theory and practice of combinatorics. Ed. A. Rosa, G. Sabidussi and J. Turgeon. Annals of Discrete Mathematics, 12. North-Holland 1982.
  • R. K. Guy, Unsolved Problems in Number Theory, C8.

Crossrefs

Cf. A005318, A005230 (column 1 of triangle).

Programs

  • Maple
    b:= proc(n) option remember;
          `if`(n<2, n, 2*b(n-1) -b(n-1-floor(1/2 +sqrt(2*n-2))))
        end:
    T:= n-> seq(b(n)-b(n-i), i=1..n):
    seq(T(n), n=1..15);  # Alois P. Heinz, Nov 29 2011
  • Mathematica
    b[n_] := b[n] = If[n < 2, n, 2*b[n-1] - b[n-1-Floor[1/2 + Sqrt[2*n-2]]]]; t[n_] := Table[b[n] - b[n-i], {i, 1, n}]; Table[t[n], {n, 1, 15}] // Flatten (* Jean-François Alcover, Jan 14 2014, after Alois P. Heinz *)

Extensions

Typo in definition (limits on i were wrong) corrected and reference added to Bohman's paper. N. J. A. Sloane, Feb 09 2012

A205744 The sequence "u_{n-r}" used by Conway and Guy in the construction of A005318 and A096858.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 4, 7, 13, 24, 24, 44, 84, 161, 309, 309, 594, 1164, 2284, 4484, 8807, 8807, 17305, 34301, 68008, 134852, 267420, 530356, 530356, 1051905, 2095003, 4172701, 8311101, 16554194, 32973536, 65679652, 65679652, 130828948, 261127540, 521203175, 1040311347, 2076449993
Offset: 1

Views

Author

N. J. A. Sloane, Feb 09 2012

Keywords

Comments

This is A005318 with the terms A005318(i) repeated iff i is a triangular number.

Crossrefs

Formula

A005318(n+1) = 2*A005318(n)-A205744(n), A205744(n) = A005318(A083920(n)), A083920(n) = n - A002024(n). - N. J. A. Sloane, Feb 11 2012

A206239 Subsequence A005318(t_n), where t_n is the n-th triangular number (A000217).

Original entry on oeis.org

0, 1, 4, 24, 309, 8807, 530356, 65679652, 16512273616, 8370804628178, 8525389679187197, 17408681737224080093, 71192609533782031405771, 582711051458083440858730497, 9542765396943645975520145941300, 312620974584432225019935558843189172, 20485270547000003746699189223065768145956
Offset: 1

Views

Author

N. J. A. Sloane, Feb 09 2012

Keywords

Comments

These are the repeated terms in A205744.

Crossrefs

A002024 k appears k times; a(n) = floor(sqrt(2n) + 1/2).

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13
Offset: 1

Views

Author

Keywords

Comments

Integer inverse function of the triangular numbers A000217. The function trinv(n) = floor((1+sqrt(1+8n))/2), n >= 0, gives the values 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, ..., that is, the same sequence with offset 0. - N. J. A. Sloane, Jun 21 2009
Array T(k,n) = n+k-1 read by antidiagonals.
Eigensequence of the triangle = A001563. - Gary W. Adamson, Dec 29 2008
Can apparently also be defined via a(n+1)=b(n) for n >= 2 where b(0)=b(1)=1 and b(n) = b(n-b(n-2))+1. Tested to be correct for all n <= 150000. - José María Grau Ribas, Jun 10 2011
For any n >= 0, a(n+1) is the least integer m such that A000217(m)=m(m+1)/2 is larger than n. This is useful when enumerating representations of n as difference of triangular numbers; see also A234813. - M. F. Hasler, Apr 19 2014
Number of binary digits of A023758, i.e., a(n) = ceiling(log_2(A023758(n+2))). - Andres Cicuttin, Apr 29 2016
a(n) and A002260(n) give respectively the x(n) and y(n) coordinates of the sorted sequence of points in the integer lattice such that x(n) > 0, 0 < y(n) <= x(n), and min(x(n), y(n)) < max(x(n+1), y(n+1)) for n > 0. - Andres Cicuttin, Dec 25 2016
Partial sums (A060432) are given by S(n) = (-a(n)^3 + a(n)*(1+6n))/6. - Daniel Cieslinski, Oct 23 2017
As an array, T(k,n) is the number of digits columns used in carryless multiplication between a k-digit number and an n-digit number. - Stefano Spezia, Sep 24 2022
a(n) is the maximum number of possible solutions to an n-statement Knights and Knaves Puzzle, where each statement is of the form "x of us are knights" for some 1 <= x <= n, knights can only tell the truth and knaves can only lie. - Taisha Charles and Brittany Ohlinger, Jul 29 2023

Examples

			From _Clark Kimberling_, Sep 16 2008: (Start)
As a rectangular array, a northwest corner:
  1 2 3 4 5 6
  2 3 4 5 6 7
  3 4 5 6 7 8
  4 5 6 7 8 9
This is the weight array (cf. A144112) of A107985 (formatted as a rectangular array). (End)
G.f. = x + 2*x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 3*x^6 + 4*x^7 + 4*x^9 + 4*x^9 + 4*x^10 + ...
		

References

  • Edward S. Barbeau, Murray S. Klamkin, and William O. J. Moser, Five Hundred Mathematical Challenges, Prob. 441, pp. 41, 194. MAA 1995.
  • R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 97.
  • K. Hardy and K. S. Williams, The Green Book of Mathematical Problems, p. 59, Solution to Prob. 14, Dover NY, 1985
  • R. Honsberger, Mathematical Morsels, pp. 133-134, MAA 1978.
  • J. F. Hurley, Litton's Problematical Recreations, pp. 152; 313-4 Prob. 22, VNR Co., NY, 1971.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 43.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 129.

Crossrefs

a(n+1) = 1+A003056(n), A022846(n)=a(n^2), a(n+1)=A002260(n)+A025581(n).
A123578 is an essentially identical sequence.

Programs

  • Haskell
    a002024 n k = a002024_tabl !! (n-1) !! (k-1)
    a002024_row n = a002024_tabl !! (n-1)
    a002024_tabl = iterate (\xs@(x:_) -> map (+ 1) (x : xs)) [1]
    a002024_list = concat a002024_tabl
    a002024' = round . sqrt . (* 2) . fromIntegral
    -- Reinhard Zumkeller, Jul 05 2015, Feb 12 2012, Mar 18 2011
    
  • Haskell
    a002024_list = [1..] >>= \n -> replicate n n
    
  • Haskell
    a002024 = (!!) $ [1..] >>= \n -> replicate n n
    -- Sascha Mücke, May 10 2016
    
  • Magma
    [Floor(Sqrt(2*n) + 1/2): n in [1..80]]; // Vincenzo Librandi, Nov 19 2014
    
  • Maple
    A002024 := n-> ceil((sqrt(1+8*n)-1)/2); seq(A002024(n), n=1..100);
  • Mathematica
    a[1] = 1; a[n_] := a[n] = a[n - a[n - 1]] + 1 (* Branko Curgus, May 12 2009 *)
    Table[n, {n, 13}, {n}] // Flatten (* Robert G. Wilson v, May 11 2010 *)
    Table[PadRight[{},n,n],{n,15}]//Flatten (* Harvey P. Dale, Jan 13 2019 *)
  • PARI
    t1(n)=floor(1/2+sqrt(2*n)) /* A002024 = this sequence */
    
  • PARI
    t2(n)=n-binomial(floor(1/2+sqrt(2*n)),2) /* A002260(n-1) */
    
  • PARI
    t3(n)=binomial(floor(3/2+sqrt(2*n)),2)-n+1 /* A004736 */
    
  • PARI
    t4(n)=n-1-binomial(floor(1/2+sqrt(2*n)),2) /* A002260(n-1)-1 */
    
  • PARI
    A002024(n)=(sqrtint(n*8)+1)\2 \\ M. F. Hasler, Apr 19 2014
    
  • PARI
    a(n)=(sqrtint(8*n-7)+1)\2
    
  • PARI
    a(n)=my(k=1);while(binomial(k+1,2)+1<=n,k++);k \\ R. J. Cano, Mar 17 2014
    
  • Python
    from math import isqrt
    def A002024(n): return (isqrt(8*n)+1)//2 # Chai Wah Wu, Feb 02 2022
  • Sage
    [floor(sqrt(2*n) +1/2) for n in (1..80)] # G. C. Greubel, Dec 10 2018
    

Formula

a(n) = floor(1/2 + sqrt(2n)). Also a(n) = ceiling((sqrt(1+8n)-1)/2). [See the Liu link for a large collection of explicit formulas. - N. J. A. Sloane, Oct 30 2019]
a((k-1)*k/2 + i) = k for k > 0 and 0 < i <= k. - Reinhard Zumkeller, Aug 30 2001
a(n) = a(n - a(n-1)) + 1, with a(1)=1. - Ian M. Levitt (ilevitt(AT)duke.poly.edu), Aug 18 2002
a(n) = round(sqrt(2n)). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002
T(n,k) = A003602(A118413(n,k)); = T(n,k) = A001511(A118416(n,k)). - Reinhard Zumkeller, Apr 27 2006
G.f.: (x/(1-x))*Product_{k>0} (1-x^(2*k))/(1-x^(2*k-1)). - Vladeta Jovovic, Oct 06 2003
Equals A127899 * A004736. - Gary W. Adamson, Feb 09 2007
Sum_{i=1..n} Sum_{j=i..n+i-1} T(j,i) = A000578(n); Sum_{i=1..n} T(n,i) = A000290(n). - Reinhard Zumkeller, Jun 24 2007
a(n) + n = A014132(n). - Vincenzo Librandi, Jul 08 2010
a(n) = ceiling(-1/2 + sqrt(2n)). - Branko Curgus, May 12 2009
a(A169581(n)) = A038567(n). - Reinhard Zumkeller, Dec 02 2009
a(n) = round(sqrt(2*n)) = round(sqrt(2*n-1)); there exist a and b greater than zero such that 2*n = 2+(a+b)^2 -(a+3*b) and a(n)=(a+b-1). - Fabio Civolani (civox(AT)tiscali.it), Feb 23 2010
A005318(n+1) = 2*A005318(n) - A205744(n), A205744(n) = A005318(A083920(n)), A083920(n) = n - a(n). - N. J. A. Sloane, Feb 11 2012
Expansion of psi(x) * x / (1 - x) in powers of x where psi() is a Ramanujan theta function. - Michael Somos, Mar 19 2014
G.f.: (x/(1-x)) * Product_{n>=1} (1 + x^n) * (1 - x^(2*n)). - Paul D. Hanna, Feb 27 2016
a(n) = 1 + Sum_{i=1..n/2} ceiling(floor(2(n-1)/(i^2+i))/(2n)). - José de Jesús Camacho Medina, Jan 07 2017
a(n) = floor((sqrt(8*n-7)+1)/2). - Néstor Jofré, Apr 24 2017
a(n) = floor((A000196(8*n)+1)/2). - Pontus von Brömssen, Dec 10 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/4 (A003881). - Amiram Eldar, Oct 01 2022
G.f. as array: (x^2*(1 - y)^2 + y^2 + x*y*(1 - 2*y))/((1 - x)^2*(1 - y)^2). - Stefano Spezia, Apr 22 2024

A004137 Maximal number of edges in a graceful graph on n nodes.

Original entry on oeis.org

0, 1, 3, 6, 9, 13, 17, 23, 29, 36, 43, 50, 58, 68, 79, 90, 101, 112, 123, 138, 153, 168, 183, 198, 213, 232
Offset: 1

Views

Author

Keywords

Comments

A graph with e edges is "graceful" if its nodes can be labeled with distinct integers in {0,1,...,e} so that, if each edge is labeled with the absolute difference between the labels of its endpoints, then the e edges have the distinct labels 1, 2, ..., e.
Equivalently, maximum m for which there's a restricted difference basis with respect to m with n elements. A "difference basis w.r.t. m" is a set of integers such that every integer from 1 to m is a difference between two elements of the set. A "restricted" difference basis is one in which the smallest element is 0 and the largest is m.
a(n) is also the length of an optimal ruler with n marks. For definitions see A103294. For example, a(6)=13 is the length of the optimal rulers with 6 marks, {[0, 1, 6, 9, 11, 13], [0, 2, 4, 7, 12, 13], [0, 1, 4, 5, 11, 13], [0, 2, 8, 9, 12, 13], [0, 1, 2, 6, 10, 13], [0, 3, 7, 11, 12, 13]}. Also n = 1 + A103298(a(n)). - Peter Luschny, Feb 28 2005
If the conjecture is true that an optimal ruler with more than 12 segments is a Wichmann ruler then the sequence continues 232, 251, 270, 289, 308, 327, ... - Peter Luschny, Oct 09 2011 [updated to take the verifications of Robison into account, Oct 01 2015]

Examples

			a(7)=17: Label the 7 nodes 0,1,8,11,13,15,17 and include all edges except those from 8 to 15, from 13 to 15, from 13 to 17 and from 15 to 17. {0,1,8,11,13,15,17} is a restricted difference basis w.r.t. 17.
a(21)=153 because there exists a complete ruler (i.e., one that can measure every distance between 1 and 153) with marks [0,1,2,3,7,14,21,28,43,58,73,88,103,118,126,134,142,150,151,152,153] and no complete ruler of greater length with the same number of marks can be found. This ruler is of the type described by B. Wichmann and it is conjectured by _Peter Luschny_ that it is impossible to improve upon Wichmann's construction for finding optimal rulers of bigger lengths.
		

References

  • J.-C. Bermond, Graceful graphs, radio antennae and French windmills, pp. 18-37 of R. J. Wilson, editor, Graph Theory and Combinatorics. Pitman, London, 1978.
  • R. K. Guy, Modular difference sets and error correcting codes. in: Unsolved Problems in Number Theory, 3rd ed. New York: Springer-Verlag, chapter C10, (2004), 181-183.
  • J. C. P. Miller, Difference bases: Three problems in additive number theory, pp. 299-322 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A080060 is an erroneous version of the sequence, given in Bermond's paper. Cf. A005488.
A289761 provides the conjectured continuation.

Programs

  • C
    See Klaus Nagel link.
    (Parallel C++) See A. Robison link.

Formula

a(n) = n*(n-1)/2 - A212661(n). - Kellen Myers, Jun 06 2016

Extensions

Miller's paper gives these lower bounds for the 8 terms from a(15) to a(22): 79, 90, 101, 112, 123, 138, 153, 168.
Edited by Dean Hickerson, Jan 26 2003
Terms 79,...,123 from Peter Luschny, Feb 28 2005, with verification by an independent program written by Klaus Nagel. Using this program Hugo Pfoertner found the next term, 138.
Using this program Hugo Pfoertner found further evidence for the conjectured term a(21)=153, Feb 23 2005
Terms a(21) .. a(24) proved by exhaustive search by Arch D. Robison, Hugo Pfoertner, Nov 01 2013
Term a(25) proved by exhaustive search by Arch D. Robison, Peter Luschny, Jan 14 2014
Term a(26) proved by exhaustive search by Fabian Schwartau, Yannic Schröder, Lars Wolf, Joerg Schoebel, Feb 22 2021

A083920 Number of nontriangular numbers <= n.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 9, 10, 10, 11, 12, 13, 14, 15, 15, 16, 17, 18, 19, 20, 21, 21, 22, 23, 24, 25, 26, 27, 28, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 55, 56, 57, 58, 59, 60, 61, 62
Offset: 0

Views

Author

Clark Kimberling, May 08 2003

Keywords

Comments

An alternative description: the sequence of nonnegative integers with the triangular numbers repeated.
a(t(n)) = t(n+1), where t(n)=A000217(n)=n(n+1)/2, the n-th triangular number. For n>=1, a(n)=a(n-1) if and only if n is a triangular number; otherwise, a(n)=1+a(n-1).

Examples

			a(7)=4 counts the nontriangular numbers, 2,4,5,7, that are <=7.
		

Crossrefs

Essentially partial sums of A023532.
Number of nonzero terms in row n+1 of A342557.

Programs

  • Haskell
    a083920 n = a083920_list !! n
    a083920_list = scanl1 (+) $ map (1 -) a010054_list
    -- Reinhard Zumkeller, Feb 12 2012
    
  • Magma
    [n-Floor((Sqrt(8*n+1)-1)/2):n in [1..75]]; // Marius A. Burtea, Jun 19 2019
    
  • Mathematica
    f[n_] := n - Floor[(Sqrt[8n + 1] - 1)/2]; Table[ f[n], {n, 0, 73}] (* Robert G. Wilson v, Oct 22 2005 *)
    Accumulate[Table[If[OddQ[Sqrt[8n+1]],0,1],{n,0,120}]] (* Harvey P. Dale, Oct 14 2014 *)
  • PARI
    a(n)=n-(sqrtint(8*n+1)-1)\2 \\ Charles R Greathouse IV, Sep 02 2015
    
  • Python
    from math import isqrt
    def A083920(n): return n-(k:=isqrt(m:=n+1<<1))+((m>=k*(k+1)+1)^1) # Chai Wah Wu, Jun 07 2025

Formula

a(n) = n-floor((x-1)/2) = n-A003056(n), where x = sqrt(8*n+1).
A005318(n+1) = 2*A005318(n)-A205744(n), A205744(n) = A005318(a(n)), a(n) = n - A002024(n). - N. J. A. Sloane, Feb 11 2012
G.f.: 1/(1 - x)^2 - (1/(1 - x))*Product_{k>=1} (1 - x^(2*k))/(1 - x^(2*k-1)). - Ilya Gutkovskiy, May 30 2017
a(n) = n - floor(sqrt(2*n + 1) - 1/2). - Ridouane Oudra, Jun 19 2019

Extensions

Added alternative definition and Guy reference. - N. J. A. Sloane, Feb 09 2012

A005230 Stern's sequence: a(1) = 1, a(n+1) is the sum of the m preceding terms, where m*(m-1)/2 < n <= m*(m+1)/2 or equivalently m = ceiling((sqrt(8*n+1)-1)/2) = A002024(n).

Original entry on oeis.org

1, 1, 2, 3, 6, 11, 20, 40, 77, 148, 285, 570, 1120, 2200, 4323, 8498, 16996, 33707, 66844, 132568, 262936, 521549, 1043098, 2077698, 4138400, 8243093, 16419342, 32706116, 65149296, 130298592, 260075635, 519108172, 1036138646, 2068138892, 4128034691
Offset: 1

Views

Author

Keywords

Comments

A002487 is THE Stern's sequence!
Limit_{n->oo} a(n)/2^n = 0.11756264240558743281779408719593950494049225979176... - Jon E. Schoenfield, Dec 17 2016

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002487.

Programs

  • Maple
    A005230[1] := 1: n := 50: for k from 1 to n-1 do: A005230[k+1] := sum('A005230[j]','j'=k+1-(ceil((sqrt(8*k+1)-1)/2))..k): od: [seq(A005230[k],k=1..n)]; # UlrSchimke(AT)aol.com, Mar 16 2002
  • Mathematica
    Module[{lst={1,1},n=2},While[n<40,AppendTo[lst,Total[ Take[lst, -Ceiling[ (Sqrt[8n+1]-1)/2]]]];n++];lst] (* Harvey P. Dale, Apr 02 2012 *)
  • PARI
    a(n)=if(n==1,1,sum(k=1,ceil((sqrt(8*n-7)-1)/2),a(n-k))) \\ Paul D. Hanna, Aug 28 2006
    
  • PARI
    v=vector(10^3);v[1]=v[2]=1;v[3]=2;v[4]=3;u=vector(#v,i,if(i>4,0,sum(j=1,i,v[j])));for(i=5,#v,m=ceil((sqrt(8*i-7)-1)/2);v[i]=u[i-1]-u[i-m-1];u[i]=u[i-1]+v[i]);u=0;v \\ Charles R Greathouse IV, Sep 19 2011
    
  • Python
    from itertools import count, islice
    from math import isqrt
    def A005230_gen(): # generator of terms
        blist = [1]
        for n in count(1):
            yield blist[-1]
            blist.append(sum(blist[-i] for i in range(1,(isqrt(8*n)+3)//2)))
    A005230_list = list(islice(A005230_gen(),30)) # Chai Wah Wu, Feb 02 2022

Formula

Partial sums give Conway-Guy sequence A005318. Cf. A066777.
2*a(n*(n+1)/2 + 1) = a(n*(n+1)/2 + 2) for n>=1; lim_{n->oo} a(n+1)/a(n) = 2. - Paul D. Hanna, Aug 28 2006

Extensions

Name corrected by Mario Szegedy, Sep 15 1996
Name revised by Ulrich Schimke (ulrschimke(AT)aol.com), Mar 16 2002

A005255 Atkinson-Negro-Santoro sequence: a(n+1) = 2*a(n) - a(n-floor(n/2+1)).

Original entry on oeis.org

0, 1, 2, 4, 7, 13, 24, 46, 88, 172, 337, 667, 1321, 2629, 5234, 10444, 20842, 41638, 83188, 166288, 332404, 664636, 1328935, 2657533, 5314399, 10628131, 21254941, 42508561, 85014493, 170026357, 340047480, 680089726, 1360169008, 2720327572
Offset: 0

Views

Author

Keywords

Comments

For each n, the n-term sequence (b(k) = a(n) - a(n-k), 1 <= k <= n), has the property that all 2^n sums of subsets of the terms are distinct.
a(n) = A062178(n+1) - 1; see also A002083. - Reinhard Zumkeller, Nov 18 2012

Examples

			For n = 4, the sequence b is 7-4,7-2,7-1,7-0 = 3,5,6,7, which has subset sums (grouped by number of terms) 0, 3,5,6,7, 8,9,10,11,12,13, 14,15,16,18, 21.
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.28.
  • T. V. Narayana, Recent progress and unsolved problems in dominance theory, pp. 68-78 of Combinatorial mathematics (Canberra 1977), Lect. Notes Math. Vol. 686, 1978.
  • T. V. Narayana, Lattice Path Combinatorics with Statistical Applications. Univ. Toronto Press, 1979, pp. 100-101.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a005255 n = a005255_list !! (n-1)
    a005255_list = scanl (+) 0 $ tail a002083_list
    -- Reinhard Zumkeller, Nov 18 2012
  • Mathematica
    a[ 0 ] := 0; a[ 1 ] := 1; a[ n_ ] := 2*a[ n - 1 ] - a[(n - 1) - Floor[ (n - 1)/2 + 1 ] ]; For[ n = 1, n <= 100, n++, Print[ a[ n ] ] ];

Extensions

More terms from Winston C. Yang (winston(AT)cs.wisc.edu), Aug 26 2000
Edited by Franklin T. Adams-Watters, Apr 11 2009

A276661 Least k such that there is a set S in {1, 2, ..., k} with n elements and the property that each of its subsets has a distinct sum.

Original entry on oeis.org

0, 1, 2, 4, 7, 13, 24, 44, 84, 161
Offset: 0

Views

Author

Charles R Greathouse IV and J. P. Grossman, Sep 11 2016

Keywords

Comments

This sequence is the main entry for the distinct subset sums problem. See also A201052, A005318, A005255.
The Conway-Guy sequence A005318 is an upper bound. Lunnon showed that a(67) < 34808838084768972989 = A005318(67), and Bohman improved the bound to a(67) <= 34808712605260918463.
Lunnon found a(0)-a(8) and J. P. Grossman found a(9).
a(10) > 220, with A201052. - Fausto A. C. Cariboni, Apr 06 2021

Examples

			a(0) = 0: {}
a(1) = 1: {1}
a(2) = 2: {1, 2}
a(3) = 4: {1, 2, 4}
a(4) = 7: {3, 5, 6, 7}
a(5) = 13: {3, 6, 11, 12, 13}
a(6) = 24: {11, 17, 20, 22, 23, 24}
a(7) = 44: {20, 31, 37, 40, 42, 43, 44}
a(8) = 84: {40, 60, 71, 77, 80, 82, 83, 84}
a(9) = 161: {77, 117, 137, 148, 154, 157, 159, 160, 161}
		

References

  • Iskander Aliev, Siegel’s lemma and sum-distinct sets, Discrete Comput. Geom. 39 (2008), 59-66.
  • J. H. Conway and R. K. Guy, Solution of a problem of Erdos, Colloq. Math. 20 (1969), p. 307.
  • Dubroff, Q., Fox, J., & Xu, M. W. (2021). A note on the Erdos distinct subset sums problem. SIAM Journal on Discrete Mathematics, 35(1), 322-324.
  • R. K. Guy, Unsolved Problems in Number Theory, Section C8.
  • Marcin Mucha, Jesper Nederlof, Jakub Pawlewicz, Karol Węgrzycki, Equal-Subset-Sum Faster Than the Meet-in-the-Middle, arXiv:1905.02424
  • Stefan Steinerberger, Some remarks on the Erdős Distinct subset sums problem, International Journal of Number Theory, 2023 , #19:08, 1783-1800 (arXiv:2208.12182).

Crossrefs

A006754 The generalized Conway-Guy sequence w^{0}.

Original entry on oeis.org

0, 3, 5, 6, 7, 14, 25, 45, 84, 162, 310, 595, 1165, 2285, 4486, 8810, 17310, 34310, 68025, 134885, 267485
Offset: 0

Views

Author

Keywords

Comments

See Lunnon for precise definition.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The sequences in Lunnon's Table 1 are A005318, A006754, A006755, A006756, A006757, A195683, A195684.
Showing 1-10 of 21 results. Next