cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A080060 Erroneous version of A004137 given in the reference.

Original entry on oeis.org

3, 6, 9, 13, 17, 23, 29, 36, 43, 50, 59, 60, 79, 90, 101, 112, 123, 138
Offset: 3

Views

Author

Keywords

References

  • J.-C. Bermond, Graceful graphs, radio antennae and French windmills, pp. 18-37 of R. J. Wilson, editor, Graph Theory and Combinatorics. Pitman, London, 1978.

A103300 Number of perfect rulers with length n.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 2, 12, 8, 4, 38, 30, 14, 6, 130, 80, 32, 12, 500, 326, 150, 66, 18, 4, 944, 460, 166, 56, 12, 6, 2036, 890, 304, 120, 20, 10, 2, 2678, 974, 362, 100, 36, 4, 2, 4892, 2114, 684, 238, 68, 22, 4, 16318, 6350, 2286, 836, 330, 108, 24, 12, 31980, 12252
Offset: 0

Views

Author

Peter Luschny, Feb 28 2005

Keywords

Comments

For definitions, references and links related to complete rulers see A103294.
The values for n = 208-213 are 22,0,0,0,4,4 according to Arch D. Robison. The values for 199-207 are not yet known. - Peter Luschny, Feb 20 2014, Jun 28 2019
Zero values at 135, 136, 149, 150, 151, 164, 165, 166, 179, 180, 181, 195, 196, 209, 210, 211. - Ed Pegg Jr, Jun 23 2019 [These values were found by Arch D. Robison, see links. Peter Luschny, Jun 28 2019]
From Yannic Schröder, Feb 22 2021: (Start)
Zero values at 135, 136, 149, 150, 151, 164, 165, 166, 179, 180, 181, 195, 196 have been replaced with correct values using an additional mark.
A lower bound for 209 is 62, for 210 is 16, and for 211 is 204.
The verified value for 212 and for 213 is 4. (End)

Examples

			a(5)=4 counts the perfect rulers with length 5, {[0,1,3,5],[0,2,4,5],[0,1,2,5],[0,3,4,5]}.
		

Crossrefs

Cf. A004137 (Maximal number of edges in a graceful graph on n nodes).

Formula

a(n) = T(n, A103298(n)) where the triangle T is described by A103294.

A103294 Triangle T, read by rows: T(n,k) = number of complete rulers with length n and k segments (n >= 0, k >= 0).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 3, 1, 0, 0, 0, 4, 4, 1, 0, 0, 0, 2, 9, 5, 1, 0, 0, 0, 0, 12, 14, 6, 1, 0, 0, 0, 0, 8, 27, 20, 7, 1, 0, 0, 0, 0, 4, 40, 48, 27, 8, 1, 0, 0, 0, 0, 0, 38, 90, 75, 35, 9, 1, 0, 0, 0, 0, 0, 30, 134, 166, 110, 44, 10, 1, 0, 0, 0, 0, 0, 14, 166, 311, 277, 154, 54, 11, 1
Offset: 0

Views

Author

Peter Luschny, Feb 28 2005

Keywords

Comments

If n=k then T(n,k)=1.
A sparse ruler, or simply a ruler, is a strict increasing finite sequence of nonnegative integers starting from 0 called marks.
A segment of a ruler is the space between two adjacent marks. The number of segments is the number of marks - 1.
A ruler is complete if the set of all distances it can measure is {1,2,3,...,k} for some integer k>=1.
A ruler is perfect if it is complete and no complete ruler with the same length possesses less marks.
A ruler is optimal if it is perfect and no perfect ruler with the same number of segments has a greater length.
The 'empty ruler' with length n=0 is considered perfect and optimal.

Examples

			Rows begin:
[1],
[0,1],
[0,0,1],
[0,0,2,1],
[0,0,0,3,1],
[0,0,0,4,4,1],
[0,0,0,2,9,5,1],
[0,0,0,0,12,14,6,1],
[0,0,0,0,8,27,20,7,1],
...
a(19)=T(5,4)=4 counts the complete rulers with length 5 and 4 segments: {[0,2,3,4,5],[0,1,3,4,5],[0,1,2,4,5],[0,1,2,3,5]}
		

References

  • G. S. Bloom and S. W. Golomb, Numbered complete graphs, unusual rulers, and assorted applications. Theory and Applications of Graphs, Lecture Notes in Math. 642, (1978), 53-65.
  • R. K. Guy, Modular difference sets and error correcting codes. in: Unsolved Problems in Number Theory, 3rd ed. New York: Springer-Verlag, chapter C10, pp. 181-183, 2004.
  • J. C. P. Miller, Difference bases: Three problems in additive number theory, pp. 299-322 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.

Crossrefs

Row sums give A103295.
Column sums give A103296.
The first nonzero entries in the rows give A103300.
The last nonzero entries in the columns give A103299.
The row numbers of the last nonzero entries in the columns give A004137.

Programs

  • Mathematica
    marks[n_, k_] := Module[{i}, i[0] = 0; iter = Sequence @@ Table[{i[j], i[j - 1] + 1, n - k + j - 1}, {j, 1, k}]; Table[Join[{0}, Array[i, k], {n}],
         iter // Evaluate] // Flatten[#, k - 1]&];
    completeQ[ruler_List] := Range[ruler[[-1]]] == Sort[ Union[ Flatten[ Table[ ruler[[i]] - ruler[[j]], {i, 1, Length[ruler]}, {j, 1, i - 1}]]]];
    rulers[n_, k_] := Select[marks[n, k - 1], completeQ];
    T[n_, n_] = 1; T[, 0] = 0; T[n, k_] := Length[rulers[n, k]];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Quiet (* Jean-François Alcover, Jul 05 2019 *)
  • Sage
    def isComplete(R) :
        S = Set([])
        L = len(R)-1
        for i in range(L,0,-1) :
            for j in (1..i) :
                S = S.union(Set([R[i]-R[i-j]]))
        return len(S) == R[L]
    def Partsum(T) :
        return [add([T[j] for j in range(i)]) for i in (0..len(T))]
    def Ruler(L, S) :
        return map(Partsum, Compositions(L, length=S))
    def CompleteRuler(L, S) :
        return tuple(filter(isComplete, Ruler(L, S)))
    for n in (0..8):
        print([len(CompleteRuler(n,k)) for k in (0..n)]) # Peter Luschny, Jul 05 2019

Extensions

Typo in data corrected by Jean-François Alcover, Jul 05 2019

A046693 Size of smallest subset S of N={0,1,2,...,n} such that S-S=N, where S-S={abs(i-j) | i,j in S}.

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16
Offset: 0

Views

Author

Keywords

Comments

It is easy to show that a(n+1) must be no larger than a(n)+1. Problem: Can a(n+1) ever be smaller than a(n)?
Problem above solved in A103300. a(137) smaller than a(136).
Except for initial term, round(sqrt(3*n + 9/4)) up to n=51. See A308766 for divergences up to n=213. See A326499 for a list of best known solutions.
From Ed Pegg Jr, Jun 23 2019: (Start)
Minimal marks for a sparse ruler of length n.
Minimal vertices in a graceful graph with n edges. (End)

Examples

			a(10)=6 since all integers in {0,1,2...10} are differences of elements of {0,1,2,3,6,10}, but not of any 5-element set.
a(17)=7 since all integers in {0,1,2...17} are differences of elements of {0,1,8,11,13,15,17}, but not of any 6-element set.
In other words, {0,1,8,11,13,15,17} is a restricted difference basis w.r.t. A004137(7)=17.
		

Crossrefs

Programs

  • Mathematica
    Prepend[Table[Round[Sqrt[3*n+9/4]]+If[MemberQ[A308766,n],1,0],{n,1,213}],1]

A289761 Maximum length of a perfect Wichmann ruler with n segments.

Original entry on oeis.org

3, 6, 9, 12, 15, 22, 29, 36, 43, 50, 57, 68, 79, 90, 101, 112, 123, 138, 153, 168, 183, 198, 213, 232, 251, 270, 289, 308, 327, 350, 373, 396, 419, 442, 465, 492, 519, 546, 573, 600, 627, 658, 689, 720, 751, 782, 813, 848, 883, 918, 953, 988, 1023, 1062, 1101, 1140, 1179, 1218, 1257, 1300, 1343, 1386, 1429
Offset: 2

Views

Author

Hugo Pfoertner, Jul 12 2017

Keywords

Comments

For definitions see A103294.

Crossrefs

Programs

  • Mathematica
    Table[(n^2 - (Mod[n, 6] - 3)^2)/3 + n, {n, 2, 66}] (* Michael De Vlieger, Jul 14 2017 *)
  • PARI
    a(n) = n + (n^2 - (n%6 - 3)^2)/3; \\ Michel Marcus, Jul 14 2017
    
  • Python
    def A289761(n): return (n+(m:=n%6))*(n-(k:=m-3))//3+k # Chai Wah Wu, Jun 20 2024

Formula

a(n) = ( n^2 - (mod(n,6)-3)^2 ) / 3 + n.
Conjectures from Colin Barker, Jul 14 2017: (Start)
G.f.: x^2*(3 + 4*x^5 - 3*x^6) / ((1 - x)^3*(1 + x)*(1 - x + x^2)*(1 + x + x^2)).
a(n) = 2*a(n-1) - a(n-2) + a(n-6) - 2*a(n-7) + a(n-8) for n>9.
(End)

A308766 Numbers k such that the minimal mark in a length k sparse ruler is round(sqrt(9 + 12*k)/2) + 1.

Original entry on oeis.org

51, 59, 69, 113, 124, 125, 135, 136, 139, 149, 150, 151, 164, 165, 166, 179, 180, 181, 195, 196, 199, 209, 210, 211
Offset: 1

Views

Author

Ed Pegg Jr, Jun 23 2019

Keywords

Comments

Other sparse rulers in the range length 1 to 213 have round(sqrt(9 + 12*k)/2) minimal marks.
Minimal vertices in k-edge graceful graph = minimal marks in length k sparse ruler.
Minimal marks can be derived from A004137 and using zero-count values in A103300.
Conjecture: Minimal marks k - round(sqrt(9 + 12*k)/2) is always 0 or 1.

Crossrefs

A005488 Maximal number of edges in a b^{hat} graceful graph with n nodes.

Original entry on oeis.org

0, 1, 3, 6, 9, 13, 18, 24, 29
Offset: 1

Views

Author

Keywords

Comments

A graph with e edges is 'b^{hat} graceful' if its nodes can be labeled with distinct nonnegative integers so that, if each edge is labeled with the absolute difference between the labels of its endpoints, then the e edges have the distinct labels 1, 2, ..., e.
Equivalently, maximum m for which there's a difference basis with respect to m with n elements. A 'difference basis w.r.t. m' is a set of integers such that every integer from 1 to m is a difference between two elements of the set.
Miller's paper gives these lower bounds for the 11 terms from a(9) to a(19): 29,37,45,51,61,70,79,93,101,113,127. (Bermond's paper gives these as exact values, but quotes Miller as their source.)

Examples

			a(7)=18: Label the 7 nodes 0,6,9,10,17,22,24 and include all edges except those from 0 to 22, from 0 to 24 and from 17 to 24. {0,6,9,10,17,22,24} is a difference basis w.r.t. 18.
		

References

  • J.-C. Bermond, Graceful graphs, radio antennae and French windmills, pp. 18-37 of R. J. Wilson, editor, Graph Theory and Combinatorics. Pitman, London, 1978.
  • R. K. Guy, Unsolved Problems in Number Theory, Sect. C10.
  • J. C. P. Miller, Difference bases: Three problems in additive number theory, pp. 299-322 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Edited by Dean Hickerson, Jan 26 2003
a(9) from J. Stauduhar, May 04 2022

A103296 Number of complete rulers with n segments.

Original entry on oeis.org

1, 1, 3, 10, 38, 175, 885, 5101, 32080, 219569, 1616882, 12747354, 106948772, 950494868
Offset: 0

Views

Author

Peter Luschny, Feb 28 2005

Keywords

Comments

For definitions, references and links related to complete rulers see A103294.
a(10) > 1616740 (contributions from rows of A103294 up to 39). - Hugo Pfoertner, Dec 16 2021

Examples

			a(2)=3 counts the complete rulers with 2 segments, {[0,1,2],[0,1,3],[0,2,3]}.
		

Crossrefs

Cf. A103301 (perfect rulers with n segments), A103299 (optimal rulers with n segments).
Cf. A103294, A103295 (complete rulers of length n).

Programs

  • Fortran
    ! Link to FORTRAN program given in A103295.

Formula

a(n) = Sum_{i=n..A004137(n+1)} T(i, n) where T is the A103294 triangle.

Extensions

a(9) from Hugo Pfoertner, Mar 17 2005
a(10)-a(11) from Fausto A. C. Cariboni, Mar 03 2022
a(12)-a(13) from Fausto A. C. Cariboni, Mar 08 2022

A103299 Number of optimal rulers with n segments (n>=0).

Original entry on oeis.org

1, 1, 2, 2, 4, 6, 12, 4, 6, 2, 2, 4, 12, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4
Offset: 0

Views

Author

Peter Luschny, Feb 28 2005

Keywords

Comments

For definitions, references and links related to complete rulers see A103294.

Examples

			a(5)=6 counts the optimal rulers with 5 segments, {[0,1,6,9,11,13], [0,2,4,7,12,13], [0,1,4,5,11,13], [0,2,8,9,12,13], [0,1,2,6,10,13], [0,3,7,11,12,13]}.
		

Crossrefs

Cf. A103296 (Complete rulers with n segments), A103301 (Perfect rulers with n segments).

Formula

a(n) = A103300(A004137(n+1)).

Extensions

Terms a(20)-a(24) proved by exhaustive search by Fabian Schwartau, Yannic Schröder, Lars Wolf, Joerg Schoebel, Feb 22 2021

A103301 Number of perfect rulers with n segments (n>=0).

Original entry on oeis.org

1, 1, 3, 9, 24, 88, 254, 1064, 1644, 3382, 4156, 8022, 26264, 52012, 25434, 8506, 5632, 6224, 12330, 34224, 108854, 103156, 75992, 86560, 69084
Offset: 0

Views

Author

Peter Luschny, Feb 28 2005

Keywords

Comments

For definitions, references and links related to complete rulers see A103294.

Examples

			a(3)=9 counts the perfect rulers with 3 segments, {[0,1,2,4],[0,2,3,4], [0,1,3,4],[0,1,3,5],[0,2,4,5],[0,1,2,5],[0,3,4,5],[0,1,4,6],[0,2,5,6]}.
		

Crossrefs

Cf. A103300, A103297, A103296 (Complete rulers with n segments), A103299 (Optimal rulers with n segments).

Formula

a(n) = Sum_{i=A004137(n)+1..A004137(n+1)} A103300(i), n>=1.

Extensions

Terms a(19)-a(24) found by exhaustive search by Fabian Schwartau, Yannic Schröder, Lars Wolf, Joerg Schoebel, Feb 23 2021
Showing 1-10 of 18 results. Next