cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A169942 Number of Golomb rulers of length n.

Original entry on oeis.org

1, 1, 3, 3, 5, 7, 13, 15, 27, 25, 45, 59, 89, 103, 163, 187, 281, 313, 469, 533, 835, 873, 1319, 1551, 2093, 2347, 3477, 3881, 5363, 5871, 8267, 9443, 12887, 14069, 19229, 22113, 29359, 32229, 44127, 48659, 64789, 71167, 94625, 105699, 139119, 151145, 199657
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2010

Keywords

Comments

Wanted: a recurrence. Are any of A169940-A169954 related to any other entries in the OEIS?
Leading entry in row n of triangle in A169940. Also the number of Sidon sets A with min(A) = 0 and max(A) = n. Odd for all n since {0,n} is the only symmetric Golomb ruler, and reversal preserves the Golomb property. Bounded from above by A032020 since the ruler {0 < r_1 < ... < r_t < n} gives rise to a composition of n: (r_1 - 0, r_2 - r_1, ... , n - r_t) with distinct parts. - Tomas Boothby, May 15 2012
Also the number of compositions of n such that every restriction to a subinterval has a different sum. This is a stronger condition than all distinct consecutive subsequences having a different sum (cf. A325676). - Gus Wiseman, May 16 2019

Examples

			For n=2, there is one Golomb Ruler: {0,2}.  For n=3, there are three: {0,3}, {0,1,3}, {0,2,3}. - _Tomas Boothby_, May 15 2012
From _Gus Wiseman_, May 16 2019: (Start)
The a(1) = 1 through a(8) = 15 compositions such that every restriction to a subinterval has a different sum:
  (1)  (2)  (3)   (4)   (5)   (6)    (7)    (8)
            (12)  (13)  (14)  (15)   (16)   (17)
            (21)  (31)  (23)  (24)   (25)   (26)
                        (32)  (42)   (34)   (35)
                        (41)  (51)   (43)   (53)
                              (132)  (52)   (62)
                              (231)  (61)   (71)
                                     (124)  (125)
                                     (142)  (143)
                                     (214)  (152)
                                     (241)  (215)
                                     (412)  (251)
                                     (421)  (341)
                                            (512)
                                            (521)
(End)
		

Crossrefs

Related to thickness: A169940-A169954, A061909.
Related to Golomb rulers: A036501, A054578, A143823.
Row sums of A325677.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@ReplaceList[#,{_,s__,_}:>Plus[s]]&]],{n,15}] (* Gus Wiseman, May 16 2019 *)
  • Sage
    def A169942(n):
        R = QQ['x']
        return sum(1 for c in cartesian_product([[0, 1]]*n) if max(R([1] + list(c) + [1])^2) == 2)
    [A169942(n) for n in range(1,8)]
    # Tomas Boothby, May 15 2012

Formula

a(n) = A169952(n) - A169952(n-1) for n>1. - Andrew Howroyd, Jul 09 2017

Extensions

a(15)-a(30) from Nathaniel Johnston, Nov 12 2011
a(31)-a(50) from Tomas Boothby, May 15 2012

A103295 Number of complete rulers with length n.

Original entry on oeis.org

1, 1, 1, 3, 4, 9, 17, 33, 63, 128, 248, 495, 988, 1969, 3911, 7857, 15635, 31304, 62732, 125501, 250793, 503203, 1006339, 2014992, 4035985, 8080448, 16169267, 32397761, 64826967, 129774838, 259822143, 520063531, 1040616486, 2083345793, 4168640894, 8342197304, 16694070805, 33404706520, 66832674546, 133736345590
Offset: 0

Views

Author

Peter Luschny, Feb 28 2005

Keywords

Comments

For definitions, references and links related to complete rulers see A103294.
Also the number of compositions of n whose consecutive subsequence-sums cover an initial interval of the positive integers. For example, (2,3,1) is such a composition because (1), (2), (3), (3,1), (2,3), and (2,3,1) are subsequences with sums covering {1..6}. - Gus Wiseman, May 17 2019
a(n) ~ c*2^n, where 0.2427 < c < 0.2459. - Fei Peng, Oct 17 2019

Examples

			a(4) = 4 counts the complete rulers with length 4, {[0,2,3,4],[0,1,3,4],[0,1,2,4],[0,1,2,3,4]}.
		

Crossrefs

Cf. A103300 (Perfect rulers with length n). Main diagonal of A349976.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],SubsetQ[ReplaceList[#,{_,s__,_}:>Plus[s]],Range[n]]&]],{n,0,15}] (* Gus Wiseman, May 17 2019 *)

Formula

a(n) = Sum_{i=0..n} A103294(n, i) = Sum_{i=A103298(n)..n} A103294(n, i).

Extensions

a(30)-a(36) from Hugo Pfoertner, Mar 17 2005
a(37)-a(38) from Hugo Pfoertner, Dec 10 2021
a(39) from Hugo Pfoertner, Dec 16 2021

A325780 Heinz numbers of perfect integer partitions.

Original entry on oeis.org

1, 2, 4, 6, 8, 16, 18, 20, 32, 42, 54, 56, 64, 100, 128, 162, 176, 234, 256, 260, 294, 392, 416, 486, 500, 512, 798, 1024, 1026, 1064, 1088, 1458, 1936, 2048, 2058, 2300, 2432, 2500, 2744, 3042, 3380, 4096, 4374, 4698, 5104, 5408, 5888, 8192, 8658, 9620, 10878
Offset: 1

Views

Author

Gus Wiseman, May 21 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The sum of prime indices of n is A056239(n). A number is in this sequence iff all of its divisors have distinct sums of prime indices, and these sums cover an initial interval of nonnegative integers. For example, the divisors of 260 are {1, 2, 4, 5, 10, 13, 20, 26, 52, 65, 130, 260}, with respective sums of prime indices {0, 1, 2, 3, 4, 6, 5, 7, 8, 9, 10, 11}, so 260 is in the sequence.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}
      2: {1}
      4: {1,1}
      6: {1,2}
      8: {1,1,1}
     16: {1,1,1,1}
     18: {1,2,2}
     20: {1,1,3}
     32: {1,1,1,1,1}
     42: {1,2,4}
     54: {1,2,2,2}
     56: {1,1,1,4}
     64: {1,1,1,1,1,1}
    100: {1,1,3,3}
    128: {1,1,1,1,1,1,1}
    162: {1,2,2,2,2}
    176: {1,1,1,1,5}
    234: {1,2,2,6}
    256: {1,1,1,1,1,1,1,1}
    260: {1,1,3,6}
		

Crossrefs

Equals the sorted concatenation of the triangle A258119.
A subsequence of A299702 and A325781.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    Select[Range[1000],Sort[hwt/@Rest[Divisors[#]]]==Range[DivisorSigma[0,#]-1]&]

Formula

Intersection of A299702 (knapsack partitions) and A325781 (complete partitions).

A333222 Numbers k such that every restriction of the k-th composition in standard order to a subinterval has a different sum.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 9, 12, 16, 17, 18, 20, 24, 32, 33, 34, 40, 41, 48, 50, 64, 65, 66, 68, 69, 70, 72, 80, 81, 88, 96, 98, 104, 128, 129, 130, 132, 133, 134, 144, 145, 160, 161, 176, 192, 194, 196, 208, 256, 257, 258, 260, 261, 262, 264, 265, 268, 272, 274
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2020

Keywords

Comments

Also numbers whose binary indices together with 0 define a Golomb ruler.
The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.

Examples

			The list of terms together with the corresponding compositions begins:
    0: ()        41: (2,3,1)    130: (6,2)      262: (6,1,2)
    1: (1)       48: (1,5)      132: (5,3)      264: (5,4)
    2: (2)       50: (1,3,2)    133: (5,2,1)    265: (5,3,1)
    4: (3)       64: (7)        134: (5,1,2)    268: (5,1,3)
    5: (2,1)     65: (6,1)      144: (3,5)      272: (4,5)
    6: (1,2)     66: (5,2)      145: (3,4,1)    274: (4,3,2)
    8: (4)       68: (4,3)      160: (2,6)      276: (4,2,3)
    9: (3,1)     69: (4,2,1)    161: (2,5,1)    288: (3,6)
   12: (1,3)     70: (4,1,2)    176: (2,1,5)    289: (3,5,1)
   16: (5)       72: (3,4)      192: (1,7)      290: (3,4,2)
   17: (4,1)     80: (2,5)      194: (1,5,2)    296: (3,2,4)
   18: (3,2)     81: (2,4,1)    196: (1,4,3)    304: (3,1,5)
   20: (2,3)     88: (2,1,4)    208: (1,2,5)    320: (2,7)
   24: (1,4)     96: (1,6)      256: (9)        321: (2,6,1)
   32: (6)       98: (1,4,2)    257: (8,1)      324: (2,4,3)
   33: (5,1)    104: (1,2,4)    258: (7,2)      328: (2,3,4)
   34: (4,2)    128: (8)        260: (6,3)      352: (2,1,6)
   40: (2,4)    129: (7,1)      261: (6,2,1)    384: (1,8)
		

Crossrefs

A subset of A233564.
Also a subset of A333223.
These compositions are counted by A169942 and A325677.
The number of distinct nonzero subsequence-sums is A333224.
The number of distinct subsequence-sums is A333257.
Lengths of optimal Golomb rulers are A003022.
Inequivalent optimal Golomb rulers are counted by A036501.
Complete rulers are A103295, with perfect case A103300.
Knapsack partitions are counted by A108917, with strict case A275972.
Distinct subsequences are counted by A124770 and A124771.
Golomb subsets are counted by A143823.
Heinz numbers of knapsack partitions are A299702.
Knapsack compositions are counted by A325676.
Maximal Golomb rulers are counted by A325683.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,300],UnsameQ@@ReplaceList[stc[#],{_,s__,_}:>Plus[s]]&]

A103294 Triangle T, read by rows: T(n,k) = number of complete rulers with length n and k segments (n >= 0, k >= 0).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 3, 1, 0, 0, 0, 4, 4, 1, 0, 0, 0, 2, 9, 5, 1, 0, 0, 0, 0, 12, 14, 6, 1, 0, 0, 0, 0, 8, 27, 20, 7, 1, 0, 0, 0, 0, 4, 40, 48, 27, 8, 1, 0, 0, 0, 0, 0, 38, 90, 75, 35, 9, 1, 0, 0, 0, 0, 0, 30, 134, 166, 110, 44, 10, 1, 0, 0, 0, 0, 0, 14, 166, 311, 277, 154, 54, 11, 1
Offset: 0

Views

Author

Peter Luschny, Feb 28 2005

Keywords

Comments

If n=k then T(n,k)=1.
A sparse ruler, or simply a ruler, is a strict increasing finite sequence of nonnegative integers starting from 0 called marks.
A segment of a ruler is the space between two adjacent marks. The number of segments is the number of marks - 1.
A ruler is complete if the set of all distances it can measure is {1,2,3,...,k} for some integer k>=1.
A ruler is perfect if it is complete and no complete ruler with the same length possesses less marks.
A ruler is optimal if it is perfect and no perfect ruler with the same number of segments has a greater length.
The 'empty ruler' with length n=0 is considered perfect and optimal.

Examples

			Rows begin:
[1],
[0,1],
[0,0,1],
[0,0,2,1],
[0,0,0,3,1],
[0,0,0,4,4,1],
[0,0,0,2,9,5,1],
[0,0,0,0,12,14,6,1],
[0,0,0,0,8,27,20,7,1],
...
a(19)=T(5,4)=4 counts the complete rulers with length 5 and 4 segments: {[0,2,3,4,5],[0,1,3,4,5],[0,1,2,4,5],[0,1,2,3,5]}
		

References

  • G. S. Bloom and S. W. Golomb, Numbered complete graphs, unusual rulers, and assorted applications. Theory and Applications of Graphs, Lecture Notes in Math. 642, (1978), 53-65.
  • R. K. Guy, Modular difference sets and error correcting codes. in: Unsolved Problems in Number Theory, 3rd ed. New York: Springer-Verlag, chapter C10, pp. 181-183, 2004.
  • J. C. P. Miller, Difference bases: Three problems in additive number theory, pp. 299-322 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.

Crossrefs

Row sums give A103295.
Column sums give A103296.
The first nonzero entries in the rows give A103300.
The last nonzero entries in the columns give A103299.
The row numbers of the last nonzero entries in the columns give A004137.

Programs

  • Mathematica
    marks[n_, k_] := Module[{i}, i[0] = 0; iter = Sequence @@ Table[{i[j], i[j - 1] + 1, n - k + j - 1}, {j, 1, k}]; Table[Join[{0}, Array[i, k], {n}],
         iter // Evaluate] // Flatten[#, k - 1]&];
    completeQ[ruler_List] := Range[ruler[[-1]]] == Sort[ Union[ Flatten[ Table[ ruler[[i]] - ruler[[j]], {i, 1, Length[ruler]}, {j, 1, i - 1}]]]];
    rulers[n_, k_] := Select[marks[n, k - 1], completeQ];
    T[n_, n_] = 1; T[, 0] = 0; T[n, k_] := Length[rulers[n, k]];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Quiet (* Jean-François Alcover, Jul 05 2019 *)
  • Sage
    def isComplete(R) :
        S = Set([])
        L = len(R)-1
        for i in range(L,0,-1) :
            for j in (1..i) :
                S = S.union(Set([R[i]-R[i-j]]))
        return len(S) == R[L]
    def Partsum(T) :
        return [add([T[j] for j in range(i)]) for i in (0..len(T))]
    def Ruler(L, S) :
        return map(Partsum, Compositions(L, length=S))
    def CompleteRuler(L, S) :
        return tuple(filter(isComplete, Ruler(L, S)))
    for n in (0..8):
        print([len(CompleteRuler(n,k)) for k in (0..n)]) # Peter Luschny, Jul 05 2019

Extensions

Typo in data corrected by Jean-François Alcover, Jul 05 2019

A353863 Number of integer partitions of n whose weak run-sums cover an initial interval of nonnegative integers.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 6, 7, 10, 11, 16, 20, 24, 30, 43, 47, 62, 79, 94, 113, 143, 170, 211, 256, 307, 372, 449, 531, 648, 779, 926, 1100, 1323, 1562, 1864, 2190, 2595, 3053, 3611, 4242, 4977, 5834, 6825, 7973, 9344, 10844, 12641, 14699, 17072, 19822
Offset: 0

Views

Author

Gus Wiseman, Jun 04 2022

Keywords

Comments

A weak run-sum of a sequence is the sum of any consecutive constant subsequence. For example, the weak run-sums of (3,2,2,1) are {1,2,3,4}.
This is a kind of completeness property, cf. A126796.

Examples

			The a(1) = 1 through a(8) = 7 partitions:
  (1)  (11)  (21)   (211)   (311)    (321)     (3211)     (3221)
             (111)  (1111)  (2111)   (3111)    (4111)     (32111)
                            (11111)  (21111)   (22111)    (41111)
                                     (111111)  (31111)    (221111)
                                               (211111)   (311111)
                                               (1111111)  (2111111)
                                                          (11111111)
		

Crossrefs

For parts instead of weak run-sums we have A000009.
For multiplicities instead of weak run-sums we have A317081.
If weak run-sums are distinct we have A353865, the completion of A353864.
A003242 counts anti-run compositions, ranked by A333489, complement A261983.
A005811 counts runs in binary expansion.
A165413 counts distinct run-lengths in binary expansion, sums A353929.
A300273 ranks collapsible partitions, counted by A275870, comps A353860.
A353832 represents taking run-sums of a partition, compositions A353847.
A353833 ranks partitions with all equal run-sums, counted by A304442.
A353835 counts distinct run-sums of prime indices.
A353837 counts partitions with distinct run-sums, ranked by A353838.
A353840-A353846 pertain to partition run-sum trajectory.
A353861 counts distinct weak run-sums of prime indices.
A353932 lists run-sums of standard compositions.

Programs

  • Mathematica
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    msubs[s_]:=Join@@@Tuples[Table[Take[t,i],{t,Split[s]},{i,0,Length[t]}]];
    wkrs[y_]:=Union[Total/@Select[msubs[y],SameQ@@#&]];
    Table[Length[Select[IntegerPartitions[n],normQ[Rest[wkrs[#]]]&]],{n,0,15}]
  • PARI
    \\ isok(p) tests the partition.
    isok(p)={my(b=0, s=0, t=0); for(i=1, #p, if(p[i]<>t, t=p[i]; s=0); s += t; b = bitor(b, 1<<(s-1))); bitand(b,b+1)==0}
    a(n) = {my(r=0); forpart(p=n, r+=isok(p)); r} \\ Andrew Howroyd, Jan 15 2024

Extensions

a(31) onwards from Andrew Howroyd, Jan 15 2024

A325768 Number of integer partitions of n for which every restriction to a subinterval has a different sum.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 5, 8, 7, 11, 12, 15, 15, 23, 22, 29, 32, 40, 42, 55, 56, 71, 75, 92, 100, 124, 128, 152, 167, 198, 212, 255, 269, 315, 343, 392, 428, 501, 529, 615, 665, 757, 812, 937, 1002, 1142, 1238, 1385, 1490, 1701, 1808, 2038, 2200, 2476
Offset: 0

Views

Author

Gus Wiseman, May 21 2019

Keywords

Comments

Also the number of Golomb rulers of length n whose consecutive marks are separated by weakly decreasing distances.
The Heinz numbers of these partitions are given by A325779.

Examples

			The a(1) = 1 through a(9) = 8 partitions:
  (1)  (2)  (3)   (4)   (5)   (6)   (7)    (8)    (9)
            (21)  (31)  (32)  (42)  (43)   (53)   (54)
                        (41)  (51)  (52)   (62)   (63)
                                    (61)   (71)   (72)
                                    (421)  (521)  (81)
                                                  (432)
                                                  (531)
                                                  (621)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@ReplaceList[#,{_,s__,_}:>Plus[s]]&]],{n,0,30}]

A325861 Number of maximal subsets of {1..n} such that every pair of distinct elements has a different quotient.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 6, 6, 9, 13, 32, 32, 57, 57, 140, 229, 373, 373, 549, 549, 825
Offset: 0

Views

Author

Gus Wiseman, May 31 2019

Keywords

Examples

			The a(1) = 1 through a(9) = 13 subsets:
  {1}  {12}  {123}  {123}  {1235}  {1235}   {12357}   {23457}   {24567}
                    {134}  {1345}  {1256}   {12567}   {24567}   {123578}
                    {234}  {2345}  {2345}   {23457}   {123578}  {134567}
                                   {2356}   {23567}   {125678}  {134578}
                                   {2456}   {24567}   {134567}  {135678}
                                   {13456}  {134567}  {134578}  {145678}
                                                      {135678}  {145789}
                                                      {145678}  {234579}
                                                      {235678}  {235678}
                                                                {235789}
                                                                {345789}
                                                                {356789}
                                                                {1256789}
		

Crossrefs

The subset case is A325860.
The maximal case is A325861.
The integer partition case is A325853.
The strict integer partition case is A325854.
Heinz numbers of the counterexamples are given by A325994.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Range[n]],UnsameQ@@Divide@@@Subsets[#,{2}]&]]],{n,0,10}]

A325853 Number of integer partitions of n such that every pair of distinct parts has a different quotient.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 14, 21, 28, 39, 51, 69, 88, 116, 148, 193, 242, 309, 385, 484, 596, 746, 915, 1128, 1371, 1679, 2030, 2460, 2964, 3570, 4268, 5115, 6088, 7251, 8584, 10175, 12002, 14159, 16619, 19526, 22846, 26713, 31153, 36300, 42169, 48990, 56728
Offset: 0

Views

Author

Gus Wiseman, May 31 2019

Keywords

Comments

Also the number of integer partitions of n such that every orderless pair of (not necessarily distinct) parts has a different product.

Examples

			The a(1) = 1 through a(7) = 14 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (31)    (41)     (42)      (52)
                    (211)   (221)    (51)      (61)
                    (1111)  (311)    (222)     (322)
                            (2111)   (321)     (331)
                            (11111)  (411)     (511)
                                     (2211)    (2221)
                                     (3111)    (3211)
                                     (21111)   (4111)
                                     (111111)  (22111)
                                               (31111)
                                               (211111)
                                               (1111111)
The one partition of 7 for which not every pair of distinct parts has a different quotient is (4,2,1).
		

Crossrefs

The subset case is A325860.
The maximal case is A325861.
The integer partition case is A325853.
The strict integer partition case is A325854.
Heinz numbers of the counterexamples are given by A325994.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Divide@@@Subsets[Union[#],{2}]&]],{n,0,20}]

A325994 Heinz numbers of integer partitions such that not every ordered pair of distinct parts has a different quotient.

Original entry on oeis.org

42, 84, 126, 168, 210, 230, 252, 294, 336, 378, 390, 399, 420, 460, 462, 504, 546, 588, 630, 672, 690, 714, 742, 756, 780, 798, 840, 882, 920, 924, 966, 1008, 1050, 1092, 1134, 1150, 1170, 1176, 1197, 1218, 1260, 1302, 1344, 1365, 1380, 1386, 1428, 1470, 1484
Offset: 1

Views

Author

Gus Wiseman, Jun 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
    42: {1,2,4}
    84: {1,1,2,4}
   126: {1,2,2,4}
   168: {1,1,1,2,4}
   210: {1,2,3,4}
   230: {1,3,9}
   252: {1,1,2,2,4}
   294: {1,2,4,4}
   336: {1,1,1,1,2,4}
   378: {1,2,2,2,4}
   390: {1,2,3,6}
   399: {2,4,8}
   420: {1,1,2,3,4}
   460: {1,1,3,9}
   462: {1,2,4,5}
   504: {1,1,1,2,2,4}
   546: {1,2,4,6}
   588: {1,1,2,4,4}
   630: {1,2,2,3,4}
   672: {1,1,1,1,1,2,4}
		

Crossrefs

The subset case is A325860.
The maximal case is A325861.
The integer partition case is A325853.
The strict integer partition case is A325854.
Heinz numbers of the counterexamples are given by A325994.

Programs

  • Mathematica
    Select[Range[1000],!UnsameQ@@Divide@@@Subsets[PrimePi/@First/@FactorInteger[#],{2}]&]
Showing 1-10 of 29 results. Next