A325858
Number of Golomb partitions of n.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 10, 14, 20, 25, 36, 47, 59, 78, 99, 122, 155, 195, 232, 295, 355, 432, 522, 641, 749, 919, 1076, 1283, 1506, 1802, 2067, 2470, 2835, 3322, 3815, 4496, 5070, 5959, 6736, 7807, 8849, 10266, 11499, 13326, 14928, 17140, 19193, 22037, 24519, 28106
Offset: 0
The a(1) = 1 through a(7) = 14 partitions:
(1) (2) (3) (4) (5) (6) (7)
(11) (21) (22) (32) (33) (43)
(111) (31) (41) (42) (52)
(211) (221) (51) (61)
(1111) (311) (222) (322)
(2111) (411) (331)
(11111) (2211) (421)
(3111) (511)
(21111) (2221)
(111111) (4111)
(22111)
(31111)
(211111)
(1111111)
The A000041(9) - a(9) = 5 non-Golomb partitions of 9 are: (531), (432), (3321), (32211), (321111).
The integer partition case is
A325858.
The strict integer partition case is
A325876.
Heinz numbers of the counterexamples are given by
A325992.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@Subtract@@@Subsets[Union[#],{2}]&]],{n,0,30}]
A325860
Number of subsets of {1..n} such that every pair of distinct elements has a different quotient.
Original entry on oeis.org
1, 2, 4, 8, 14, 28, 52, 104, 188, 308, 548, 1096, 1784, 3568, 6168, 10404, 16200, 32400, 49968, 99936, 155584, 256944, 433736, 867472, 1297504, 2026288, 3387216, 5692056, 8682912, 17365824, 25243200, 50486400, 78433056, 125191968, 206649216, 328195632
Offset: 0
The a(0) = 1 through a(4) = 14 subsets:
{} {} {} {} {}
{1} {1} {1} {1}
{2} {2} {2}
{12} {3} {3}
{12} {4}
{13} {12}
{23} {13}
{123} {14}
{23}
{24}
{34}
{123}
{134}
{234}
The integer partition case is
A325853.
The strict integer partition case is
A325854.
Heinz numbers of the counterexamples are given by
A325994.
Cf.
A002033,
A108917,
A143823,
A196723,
A196723,
A196724,
A325855,
A325858,
A325859,
A325868,
A325869.
-
Table[Length[Select[Subsets[Range[n]],UnsameQ@@Divide@@@Subsets[#,{2}]&]],{n,0,20}]
A326023
Number of subsets of {1..n} containing all of their integer quotients.
Original entry on oeis.org
1, 2, 3, 5, 9, 17, 25, 49, 73, 145, 217, 433, 553, 1105, 1657, 2593, 3937, 7873, 10057, 20113, 26689, 42321, 63481, 126961, 154801, 309601, 464401, 737569, 992161, 1984321, 2450881, 4901761, 6292801, 10197313, 15295969, 26241697, 32947489, 65894977, 98842465, 161587873, 205842529
Offset: 0
The a(0) = 1 through a(5) = 17 subsets:
{} {} {} {} {} {}
{1} {1} {1} {1} {1}
{1,2} {1,2} {1,2} {1,2}
{1,3} {1,3} {1,3}
{1,2,3} {1,4} {1,4}
{1,2,3} {1,5}
{1,2,4} {1,2,3}
{1,3,4} {1,2,4}
{1,2,3,4} {1,2,5}
{1,3,4}
{1,3,5}
{1,4,5}
{1,2,3,4}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
{1,2,3,4,5}
Cf.
A007865,
A051026,
A054519,
A067992,
A103580,
A325853,
A325854,
A325860,
A325861,
A325994,
A326078.
-
Table[Length[Select[Subsets[Range[n]],SubsetQ[#,Select[Divide@@@Tuples[#,2],IntegerQ]]&]],{n,0,10}]
A325861
Number of maximal subsets of {1..n} such that every pair of distinct elements has a different quotient.
Original entry on oeis.org
1, 1, 1, 1, 3, 3, 6, 6, 9, 13, 32, 32, 57, 57, 140, 229, 373, 373, 549, 549, 825
Offset: 0
The a(1) = 1 through a(9) = 13 subsets:
{1} {12} {123} {123} {1235} {1235} {12357} {23457} {24567}
{134} {1345} {1256} {12567} {24567} {123578}
{234} {2345} {2345} {23457} {123578} {134567}
{2356} {23567} {125678} {134578}
{2456} {24567} {134567} {135678}
{13456} {134567} {134578} {145678}
{135678} {145789}
{145678} {234579}
{235678} {235678}
{235789}
{345789}
{356789}
{1256789}
The integer partition case is
A325853.
The strict integer partition case is
A325854.
Heinz numbers of the counterexamples are given by
A325994.
-
fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
Table[Length[fasmax[Select[Subsets[Range[n]],UnsameQ@@Divide@@@Subsets[#,{2}]&]]],{n,0,10}]
A325876
Number of strict Golomb partitions of n.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 3, 5, 6, 6, 9, 11, 10, 15, 17, 18, 24, 29, 27, 38, 43, 47, 53, 67, 67, 84, 87, 102, 113, 137, 131, 167, 179, 204, 213, 261, 263, 315, 327, 377, 413, 476, 472, 564, 602, 677, 707, 820, 845, 969, 1027, 1131, 1213, 1364, 1413, 1596, 1700, 1858
Offset: 0
The a(2) = 1 through a(11) = 11 partitions (A = 10, B = 11):
(2) (3) (4) (5) (6) (7) (8) (9) (A) (B)
(21) (31) (32) (42) (43) (53) (54) (64) (65)
(41) (51) (52) (62) (63) (73) (74)
(61) (71) (72) (82) (83)
(421) (431) (81) (91) (92)
(521) (621) (532) (A1)
(541) (542)
(631) (632)
(721) (641)
(731)
(821)
The integer partition case is
A325858.
The strict integer partition case is
A325876.
Heinz numbers of the counterexamples are given by
A325992.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Subtract@@@Subsets[Union[#],{2}]&]],{n,0,30}]
-
from collections import Counter
from itertools import combinations
from sympy.utilities.iterables import partitions
def A325876(n): return sum(1 for p in partitions(n) if max(list(Counter(abs(d[0]-d[1]) for d in combinations(list(Counter(p).elements()),2)).values()),default=1)==1)-(n&1^1) if n else 1 # Chai Wah Wu, Sep 17 2023
A325994
Heinz numbers of integer partitions such that not every ordered pair of distinct parts has a different quotient.
Original entry on oeis.org
42, 84, 126, 168, 210, 230, 252, 294, 336, 378, 390, 399, 420, 460, 462, 504, 546, 588, 630, 672, 690, 714, 742, 756, 780, 798, 840, 882, 920, 924, 966, 1008, 1050, 1092, 1134, 1150, 1170, 1176, 1197, 1218, 1260, 1302, 1344, 1365, 1380, 1386, 1428, 1470, 1484
Offset: 1
The sequence of terms together with their prime indices begins:
42: {1,2,4}
84: {1,1,2,4}
126: {1,2,2,4}
168: {1,1,1,2,4}
210: {1,2,3,4}
230: {1,3,9}
252: {1,1,2,2,4}
294: {1,2,4,4}
336: {1,1,1,1,2,4}
378: {1,2,2,2,4}
390: {1,2,3,6}
399: {2,4,8}
420: {1,1,2,3,4}
460: {1,1,3,9}
462: {1,2,4,5}
504: {1,1,1,2,2,4}
546: {1,2,4,6}
588: {1,1,2,4,4}
630: {1,2,2,3,4}
672: {1,1,1,1,1,2,4}
The integer partition case is
A325853.
The strict integer partition case is
A325854.
Heinz numbers of the counterexamples are given by
A325994.
Cf.
A002033,
A056239,
A103300,
A108917,
A112798,
A143823,
A196724,
A325768,
A325856,
A325868,
A325869,
A325876.
A325854
Number of strict integer partitions of n such that every pair of distinct parts has a different quotient.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 4, 4, 6, 8, 9, 12, 13, 16, 20, 23, 30, 33, 41, 47, 52, 61, 75, 90, 98, 116, 132, 151, 173, 206, 226, 263, 297, 337, 387, 427, 488, 555, 623, 697, 782, 886, 984, 1108, 1240, 1374, 1545, 1726, 1910, 2120, 2358, 2614, 2903, 3218, 3567, 3933
Offset: 0
The a(1) = 1 through a(10) = 9 partitions (A = 10):
(1) (2) (3) (4) (5) (6) (7) (8) (9) (A)
(21) (31) (32) (42) (43) (53) (54) (64)
(41) (51) (52) (62) (63) (73)
(321) (61) (71) (72) (82)
(431) (81) (91)
(521) (432) (532)
(531) (541)
(621) (631)
(721)
The two strict partitions of 13 such that not every pair of distinct parts has a different quotient are (9,3,1) and (6,4,2,1).
The integer partition case is
A325853.
The strict integer partition case is
A325854.
Heinz numbers of the counterexamples are given by
A325994.
Cf.
A108917,
A143823,
A196724,
A275972,
A325768,
A325855,
A325858,
A325868,
A325869,
A325876,
A325877.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Divide@@@Subsets[Union[#],{2}]&]],{n,0,30}]
A325856
Number of integer partitions of n such that every pair of distinct parts has a different product.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 76, 100, 133, 171, 225, 287, 369, 467, 592, 740, 931, 1155, 1435, 1767, 2178, 2661, 3254, 3953, 4798, 5793, 6991, 8390, 10069, 12022, 14346, 17054, 20255, 23960, 28334, 33390, 39308, 46148, 54116, 63295, 73967, 86224
Offset: 0
The five partitions of 15 not satisfying the condition are:
(8,4,2,1)
(6,4,3,2)
(6,3,3,2,1)
(6,3,2,2,1,1)
(6,3,2,1,1,1,1)
The integer partition case is
A325856.
The strict integer partition case is
A325855.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@Times@@@Subsets[Union[#],{2}]&]],{n,0,30}]
A325857
Number of integer partitions of n such that every orderless pair of distinct parts has a different sum.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 55, 74, 97, 125, 165, 209, 269, 335, 428, 527, 664, 804, 1005, 1210, 1496, 1780, 2186, 2586, 3148, 3698, 4473, 5226, 6279, 7290, 8706, 10067, 11950, 13744, 16242, 18605, 21864, 24942, 29184, 33188, 38651, 43782, 50791, 57402, 66300, 74683, 86026, 96658
Offset: 0
The A000041(14) - a(14) = 10 partitions of 14 not satisfying the condition are:
(6,5,2,1)
(6,4,3,1)
(5,4,3,2)
(5,4,2,2,1)
(4,4,3,2,1)
(5,4,2,1,1,1)
(4,3,3,2,1,1)
(4,3,2,2,2,1)
(4,3,2,2,1,1,1)
(4,3,2,1,1,1,1,1)
The integer partition case is
A325857.
The strict integer partition case is
A325877.
Heinz numbers of the counterexamples are given by
A325991.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@Plus@@@Subsets[Union[#],{2}]&]],{n,0,30}]
A325868
Number of subsets of {1..n} containing n such that every ordered pair of distinct elements has a different quotient.
Original entry on oeis.org
1, 2, 4, 6, 14, 24, 52, 84, 120, 240, 548, 688, 1784, 2600, 4236, 5796, 16200, 17568, 49968, 55648, 101360, 176792, 433736, 430032, 728784, 1360928, 2304840, 2990856, 8682912, 7877376, 25243200, 27946656, 46758912, 81457248, 121546416, 114388320, 442583952
Offset: 1
The a(1) = 1 through a(5) = 14 subsets:
{1} {2} {3} {4} {5}
{1,2} {1,3} {1,4} {1,5}
{2,3} {2,4} {2,5}
{1,2,3} {3,4} {3,5}
{1,3,4} {4,5}
{2,3,4} {1,2,5}
{1,3,5}
{1,4,5}
{2,3,5}
{2,4,5}
{3,4,5}
{1,2,3,5}
{1,3,4,5}
{2,3,4,5}
-
Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&UnsameQ@@Divide@@@Subsets[#,{2}]&]],{n,10}]
Showing 1-10 of 12 results.
Comments