cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A325858 Number of Golomb partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 14, 20, 25, 36, 47, 59, 78, 99, 122, 155, 195, 232, 295, 355, 432, 522, 641, 749, 919, 1076, 1283, 1506, 1802, 2067, 2470, 2835, 3322, 3815, 4496, 5070, 5959, 6736, 7807, 8849, 10266, 11499, 13326, 14928, 17140, 19193, 22037, 24519, 28106
Offset: 0

Views

Author

Gus Wiseman, Jun 02 2019

Keywords

Comments

We define a Golomb partition of n to be an integer partition of n such that every pair of distinct parts has a different difference.
Also the number of integer partitions of n such that every orderless pair of (not necessarily distinct) parts has a different sum.
The strict case is A325876.

Examples

			The a(1) = 1 through a(7) = 14 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (31)    (41)     (42)      (52)
                    (211)   (221)    (51)      (61)
                    (1111)  (311)    (222)     (322)
                            (2111)   (411)     (331)
                            (11111)  (2211)    (421)
                                     (3111)    (511)
                                     (21111)   (2221)
                                     (111111)  (4111)
                                               (22111)
                                               (31111)
                                               (211111)
                                               (1111111)
The A000041(9) - a(9) = 5 non-Golomb partitions of 9 are: (531), (432), (3321), (32211), (321111).
		

Crossrefs

The subset case is A143823.
The maximal case is A325879.
The integer partition case is A325858.
The strict integer partition case is A325876.
Heinz numbers of the counterexamples are given by A325992.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Subtract@@@Subsets[Union[#],{2}]&]],{n,0,30}]

A325860 Number of subsets of {1..n} such that every pair of distinct elements has a different quotient.

Original entry on oeis.org

1, 2, 4, 8, 14, 28, 52, 104, 188, 308, 548, 1096, 1784, 3568, 6168, 10404, 16200, 32400, 49968, 99936, 155584, 256944, 433736, 867472, 1297504, 2026288, 3387216, 5692056, 8682912, 17365824, 25243200, 50486400, 78433056, 125191968, 206649216, 328195632
Offset: 0

Views

Author

Gus Wiseman, May 31 2019

Keywords

Comments

Also subsets of {1..n} such that every orderless pair of (not necessarily distinct) elements has a different product.

Examples

			The a(0) = 1 through a(4) = 14 subsets:
  {}  {}   {}    {}     {}
      {1}  {1}   {1}    {1}
           {2}   {2}    {2}
           {12}  {3}    {3}
                 {12}   {4}
                 {13}   {12}
                 {23}   {13}
                 {123}  {14}
                        {23}
                        {24}
                        {34}
                        {123}
                        {134}
                        {234}
		

Crossrefs

The subset case is A325860.
The maximal case is A325861.
The integer partition case is A325853.
The strict integer partition case is A325854.
Heinz numbers of the counterexamples are given by A325994.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],UnsameQ@@Divide@@@Subsets[#,{2}]&]],{n,0,20}]

Extensions

a(21)-a(25) from Alois P. Heinz, Jun 07 2019
a(26)-a(35) from Fausto A. C. Cariboni, Oct 04 2020

A325861 Number of maximal subsets of {1..n} such that every pair of distinct elements has a different quotient.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 6, 6, 9, 13, 32, 32, 57, 57, 140, 229, 373, 373, 549, 549, 825
Offset: 0

Views

Author

Gus Wiseman, May 31 2019

Keywords

Examples

			The a(1) = 1 through a(9) = 13 subsets:
  {1}  {12}  {123}  {123}  {1235}  {1235}   {12357}   {23457}   {24567}
                    {134}  {1345}  {1256}   {12567}   {24567}   {123578}
                    {234}  {2345}  {2345}   {23457}   {123578}  {134567}
                                   {2356}   {23567}   {125678}  {134578}
                                   {2456}   {24567}   {134567}  {135678}
                                   {13456}  {134567}  {134578}  {145678}
                                                      {135678}  {145789}
                                                      {145678}  {234579}
                                                      {235678}  {235678}
                                                                {235789}
                                                                {345789}
                                                                {356789}
                                                                {1256789}
		

Crossrefs

The subset case is A325860.
The maximal case is A325861.
The integer partition case is A325853.
The strict integer partition case is A325854.
Heinz numbers of the counterexamples are given by A325994.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Range[n]],UnsameQ@@Divide@@@Subsets[#,{2}]&]]],{n,0,10}]

A325853 Number of integer partitions of n such that every pair of distinct parts has a different quotient.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 14, 21, 28, 39, 51, 69, 88, 116, 148, 193, 242, 309, 385, 484, 596, 746, 915, 1128, 1371, 1679, 2030, 2460, 2964, 3570, 4268, 5115, 6088, 7251, 8584, 10175, 12002, 14159, 16619, 19526, 22846, 26713, 31153, 36300, 42169, 48990, 56728
Offset: 0

Views

Author

Gus Wiseman, May 31 2019

Keywords

Comments

Also the number of integer partitions of n such that every orderless pair of (not necessarily distinct) parts has a different product.

Examples

			The a(1) = 1 through a(7) = 14 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (31)    (41)     (42)      (52)
                    (211)   (221)    (51)      (61)
                    (1111)  (311)    (222)     (322)
                            (2111)   (321)     (331)
                            (11111)  (411)     (511)
                                     (2211)    (2221)
                                     (3111)    (3211)
                                     (21111)   (4111)
                                     (111111)  (22111)
                                               (31111)
                                               (211111)
                                               (1111111)
The one partition of 7 for which not every pair of distinct parts has a different quotient is (4,2,1).
		

Crossrefs

The subset case is A325860.
The maximal case is A325861.
The integer partition case is A325853.
The strict integer partition case is A325854.
Heinz numbers of the counterexamples are given by A325994.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Divide@@@Subsets[Union[#],{2}]&]],{n,0,20}]

A325876 Number of strict Golomb partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 6, 6, 9, 11, 10, 15, 17, 18, 24, 29, 27, 38, 43, 47, 53, 67, 67, 84, 87, 102, 113, 137, 131, 167, 179, 204, 213, 261, 263, 315, 327, 377, 413, 476, 472, 564, 602, 677, 707, 820, 845, 969, 1027, 1131, 1213, 1364, 1413, 1596, 1700, 1858
Offset: 0

Views

Author

Gus Wiseman, Jun 02 2019

Keywords

Comments

We define a Golomb partition of n to be an integer partition of n such that every ordered pair of distinct parts has a different difference.
Also the number of strict integer partitions of n such that every orderless pair of (not necessarily distinct) parts has a different sum.
The non-strict case is A325858.

Examples

			The a(2) = 1 through a(11) = 11 partitions (A = 10, B = 11):
  (2)  (3)   (4)   (5)   (6)   (7)    (8)    (9)    (A)    (B)
       (21)  (31)  (32)  (42)  (43)   (53)   (54)   (64)   (65)
                   (41)  (51)  (52)   (62)   (63)   (73)   (74)
                               (61)   (71)   (72)   (82)   (83)
                               (421)  (431)  (81)   (91)   (92)
                                      (521)  (621)  (532)  (A1)
                                                    (541)  (542)
                                                    (631)  (632)
                                                    (721)  (641)
                                                           (731)
                                                           (821)
		

Crossrefs

The subset case is A143823.
The maximal case is A325879.
The integer partition case is A325858.
The strict integer partition case is A325876.
Heinz numbers of the counterexamples are given by A325992.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Subtract@@@Subsets[Union[#],{2}]&]],{n,0,30}]
  • Python
    from collections import Counter
    from itertools import combinations
    from sympy.utilities.iterables import partitions
    def A325876(n): return sum(1 for p in partitions(n) if max(list(Counter(abs(d[0]-d[1]) for d in combinations(list(Counter(p).elements()),2)).values()),default=1)==1)-(n&1^1) if n else 1 # Chai Wah Wu, Sep 17 2023

A325994 Heinz numbers of integer partitions such that not every ordered pair of distinct parts has a different quotient.

Original entry on oeis.org

42, 84, 126, 168, 210, 230, 252, 294, 336, 378, 390, 399, 420, 460, 462, 504, 546, 588, 630, 672, 690, 714, 742, 756, 780, 798, 840, 882, 920, 924, 966, 1008, 1050, 1092, 1134, 1150, 1170, 1176, 1197, 1218, 1260, 1302, 1344, 1365, 1380, 1386, 1428, 1470, 1484
Offset: 1

Views

Author

Gus Wiseman, Jun 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
    42: {1,2,4}
    84: {1,1,2,4}
   126: {1,2,2,4}
   168: {1,1,1,2,4}
   210: {1,2,3,4}
   230: {1,3,9}
   252: {1,1,2,2,4}
   294: {1,2,4,4}
   336: {1,1,1,1,2,4}
   378: {1,2,2,2,4}
   390: {1,2,3,6}
   399: {2,4,8}
   420: {1,1,2,3,4}
   460: {1,1,3,9}
   462: {1,2,4,5}
   504: {1,1,1,2,2,4}
   546: {1,2,4,6}
   588: {1,1,2,4,4}
   630: {1,2,2,3,4}
   672: {1,1,1,1,1,2,4}
		

Crossrefs

The subset case is A325860.
The maximal case is A325861.
The integer partition case is A325853.
The strict integer partition case is A325854.
Heinz numbers of the counterexamples are given by A325994.

Programs

  • Mathematica
    Select[Range[1000],!UnsameQ@@Divide@@@Subsets[PrimePi/@First/@FactorInteger[#],{2}]&]

A325854 Number of strict integer partitions of n such that every pair of distinct parts has a different quotient.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 4, 6, 8, 9, 12, 13, 16, 20, 23, 30, 33, 41, 47, 52, 61, 75, 90, 98, 116, 132, 151, 173, 206, 226, 263, 297, 337, 387, 427, 488, 555, 623, 697, 782, 886, 984, 1108, 1240, 1374, 1545, 1726, 1910, 2120, 2358, 2614, 2903, 3218, 3567, 3933
Offset: 0

Views

Author

Gus Wiseman, May 31 2019

Keywords

Comments

Also the number of strict integer partitions of n such that every pair of (not necessarily distinct) parts has a different product.

Examples

			The a(1) = 1 through a(10) = 9 partitions (A = 10):
  (1)  (2)  (3)   (4)   (5)   (6)    (7)   (8)    (9)    (A)
            (21)  (31)  (32)  (42)   (43)  (53)   (54)   (64)
                        (41)  (51)   (52)  (62)   (63)   (73)
                              (321)  (61)  (71)   (72)   (82)
                                           (431)  (81)   (91)
                                           (521)  (432)  (532)
                                                  (531)  (541)
                                                  (621)  (631)
                                                         (721)
The two strict partitions of 13 such that not every pair of distinct parts has a different quotient are (9,3,1) and (6,4,2,1).
		

Crossrefs

The subset case is A325860.
The maximal case is A325861.
The integer partition case is A325853.
The strict integer partition case is A325854.
Heinz numbers of the counterexamples are given by A325994.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Divide@@@Subsets[Union[#],{2}]&]],{n,0,30}]

A325992 Heinz numbers of integer partitions such that not every ordered pair of distinct parts has a different difference.

Original entry on oeis.org

30, 60, 90, 105, 110, 120, 150, 180, 210, 220, 238, 240, 270, 273, 300, 315, 330, 360, 385, 390, 420, 440, 450, 462, 476, 480, 506, 510, 525, 540, 546, 550, 570, 600, 627, 630, 660, 690, 714, 720, 735, 750, 770, 780, 806, 810, 819, 840, 858, 870, 880, 900, 910
Offset: 1

Views

Author

Gus Wiseman, Jun 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   30: {1,2,3}
   60: {1,1,2,3}
   90: {1,2,2,3}
  105: {2,3,4}
  110: {1,3,5}
  120: {1,1,1,2,3}
  150: {1,2,3,3}
  180: {1,1,2,2,3}
  210: {1,2,3,4}
  220: {1,1,3,5}
  238: {1,4,7}
  240: {1,1,1,1,2,3}
  270: {1,2,2,2,3}
  273: {2,4,6}
  300: {1,1,2,3,3}
  315: {2,2,3,4}
  330: {1,2,3,5}
  360: {1,1,1,2,2,3}
  385: {3,4,5}
  390: {1,2,3,6}
		

Crossrefs

The subset case is A143823.
The maximal case is A325879.
The integer partition case is A325858.
The strict integer partition case is A325876.
Heinz numbers of the counterexamples are given by A325992.

Programs

  • Mathematica
    Select[Range[1000],!UnsameQ@@Subtract@@@Subsets[PrimePi/@First/@FactorInteger[#],{2}]&]

A325869 Number of maximal subsets of {1..n} containing n such that every pair of distinct elements has a different quotient.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 6, 6, 20, 32, 29, 57, 83, 113, 183, 373, 233, 549, 360
Offset: 1

Views

Author

Gus Wiseman, Jun 02 2019

Keywords

Examples

			The a(1) = 1 through a(7) = 6 subsets:
  {1}  {1,2}  {1,2,3}  {1,3,4}  {1,2,3,5}  {1,2,5,6}    {1,2,3,5,7}
                       {2,3,4}  {1,3,4,5}  {2,3,5,6}    {1,2,5,6,7}
                                {2,3,4,5}  {2,4,5,6}    {2,3,4,5,7}
                                           {1,3,4,5,6}  {2,3,5,6,7}
                                                        {2,4,5,6,7}
                                                        {1,3,4,5,6,7}
		

Crossrefs

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&)/@y];
    Table[Length[fasmax[Select[Subsets[Range[n]],MemberQ[#,n]&&UnsameQ@@Divide@@@Subsets[#,{2}]&]]],{n,10}]
Showing 1-9 of 9 results.