A325781 Heinz numbers of complete integer partitions.
1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 30, 32, 36, 40, 42, 48, 54, 56, 60, 64, 72, 80, 84, 90, 96, 100, 108, 112, 120, 126, 128, 132, 140, 144, 150, 160, 162, 168, 176, 180, 192, 198, 200, 210, 216, 220, 224, 234, 240, 252, 256, 260, 264, 270, 280, 288, 294, 300
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 1: {} 2: {1} 4: {1,1} 6: {1,2} 8: {1,1,1} 12: {1,1,2} 16: {1,1,1,1} 18: {1,2,2} 20: {1,1,3} 24: {1,1,1,2} 30: {1,2,3} 32: {1,1,1,1,1} 36: {1,1,2,2} 40: {1,1,1,3} 42: {1,2,4} 48: {1,1,1,1,2} 54: {1,2,2,2} 56: {1,1,1,4} 60: {1,1,2,3} 64: {1,1,1,1,1,1}
Crossrefs
Programs
-
Mathematica
normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]]; hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]]; Select[Range[1000],normQ[hwt/@Rest[Divisors[#]]]&]
Comments