cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A325694 Numbers with one fewer divisors than the sum of their prime indices.

Original entry on oeis.org

5, 9, 14, 15, 44, 45, 50, 78, 104, 105, 110, 135, 196, 225, 272, 276, 342, 380, 405, 476, 572, 585, 608, 650, 693, 726, 735, 825, 888, 930, 968, 1125, 1215, 1218, 1240, 1472, 1476, 1482, 1518, 1566, 1610, 1624, 1976, 1995, 2024, 2090, 2210, 2256, 2565, 2618
Offset: 1

Views

Author

Gus Wiseman, May 23 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n).
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of the partitions counted by A325836.

Examples

			The sequence of terms together with their prime indices begins:
     5: {3}
     9: {2,2}
    14: {1,4}
    15: {2,3}
    44: {1,1,5}
    45: {2,2,3}
    50: {1,3,3}
    78: {1,2,6}
   104: {1,1,1,6}
   105: {2,3,4}
   110: {1,3,5}
   135: {2,2,2,3}
   196: {1,1,4,4}
   225: {2,2,3,3}
   272: {1,1,1,1,7}
   276: {1,1,2,9}
   342: {1,2,2,8}
   380: {1,1,3,8}
   405: {2,2,2,2,3}
   476: {1,1,4,7}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],DivisorSigma[0,#]==Total[Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]]-1&]

A365830 Heinz numbers of incomplete integer partitions, meaning not every number from 0 to A056239(n) is the sum of some submultiset.

Original entry on oeis.org

3, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89
Offset: 1

Views

Author

Gus Wiseman, Sep 26 2023

Keywords

Comments

First differs from A325798 in lacking 156.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The complement (complete partitions) is A325781.

Examples

			The terms together with their prime indices begin:
   3: {2}
   5: {3}
   7: {4}
   9: {2,2}
  10: {1,3}
  11: {5}
  13: {6}
  14: {1,4}
  15: {2,3}
  17: {7}
  19: {8}
  21: {2,4}
  22: {1,5}
  23: {9}
  25: {3,3}
  26: {1,6}
  27: {2,2,2}
  28: {1,1,4}
For example, the submultisets of (1,1,2,6) (right column) and their sums (left column) are:
   0: ()
   1: (1)
   2: (2)  or (11)
   3: (12)
   4: (112)
   6: (6)
   7: (16)
   8: (26) or (116)
   9: (126)
  10: (1126)
But 5 is missing, so 156 is in the sequence.
		

Crossrefs

For prime indices instead of sums we have A080259, complement of A055932.
The complement is A325781, counted by A126796, strict A188431.
Positions of nonzero terms in A325799, complement A304793.
These partitions are counted by A365924, strict A365831.
A056239 adds up prime indices, row sums of A112798.
A276024 counts positive subset-sums of partitions, strict A284640
A299701 counts distinct subset-sums of prime indices.
A365918 counts distinct non-subset-sums of partitions, strict A365922.
A365923 counts partitions by distinct non-subset-sums, strict A365545.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    nmz[y_]:=Complement[Range[Total[y]],Total/@Subsets[y]];
    Select[Range[100],Length[nmz[prix[#]]]>0&]

A325792 Positive integers with as many proper divisors as the sum of their prime indices.

Original entry on oeis.org

1, 2, 4, 6, 8, 16, 18, 20, 32, 42, 54, 56, 64, 100, 128, 162, 176, 204, 234, 256, 260, 294, 308, 315, 350, 392, 416, 486, 500, 512, 690, 696, 798, 920, 1024, 1026, 1064, 1088, 1116, 1122, 1190, 1365, 1430, 1458, 1496, 1755, 1936, 1968, 2025, 2048, 2058, 2079
Offset: 1

Views

Author

Gus Wiseman, May 23 2019

Keywords

Comments

First differs from A325780 in having 204.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n).

Examples

			The term 42 is in the sequence because it has 7 proper divisors (1, 2, 3, 6, 7, 14, 21) and its sum of prime indices is also 1 + 2 + 4 = 7.
The sequence of terms together with their prime indices begins:
     1: {}
     2: {1}
     4: {1,1}
     6: {1,2}
     8: {1,1,1}
    16: {1,1,1,1}
    18: {1,2,2}
    20: {1,1,3}
    32: {1,1,1,1,1}
    42: {1,2,4}
    54: {1,2,2,2}
    56: {1,1,1,4}
    64: {1,1,1,1,1,1}
   100: {1,1,3,3}
   128: {1,1,1,1,1,1,1}
   162: {1,2,2,2,2}
   176: {1,1,1,1,5}
   204: {1,1,2,7}
   234: {1,2,2,6}
   256: {1,1,1,1,1,1,1,1}
		

Crossrefs

Positions of 1's in A325794.
Heinz numbers of the partitions counted by A325828.

Programs

  • Mathematica
    Select[Range[100],DivisorSigma[0,#]-1==Total[Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]]&]

A325799 Sum of the prime indices of n minus the number of distinct positive subset-sums of the prime indices of n.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 3, 0, 2, 1, 4, 0, 5, 2, 2, 0, 6, 0, 7, 0, 3, 3, 8, 0, 4, 4, 3, 1, 9, 0, 10, 0, 4, 5, 4, 0, 11, 6, 5, 0, 12, 0, 13, 2, 2, 7, 14, 0, 6, 2, 6, 3, 15, 0, 5, 0, 7, 8, 16, 0, 17, 9, 4, 0, 6, 1, 18, 4, 8, 2, 19, 0, 20, 10, 3, 5, 6, 2, 21, 0, 4, 11
Offset: 1

Views

Author

Gus Wiseman, May 23 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n). A positive subset-sum of an integer partition is any sum of a nonempty submultiset of it.

Examples

			The prime indices of 21 are {2,4}, with positive subset-sums {2,4,6}, so a(21) = 6 - 3 = 3.
		

Crossrefs

Positions of 1's are A325800.
Positions of nonzero terms are A325798.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p] k]];
    Table[hwt[n]-Length[Union[hwt/@Rest[Divisors[n]]]],{n,30}]

Formula

a(n) = A056239(n) - A304793(n).

A325793 Positive integers whose number of divisors is equal to their sum of prime indices.

Original entry on oeis.org

3, 10, 28, 66, 70, 88, 208, 228, 306, 340, 364, 490, 495, 525, 544, 550, 675, 744, 870, 966, 1160, 1216, 1242, 1254, 1288, 1326, 1330, 1332, 1672, 1768, 1785, 1870, 2002, 2064, 2145, 2295, 2457, 2900, 2944, 3250, 3280, 3430, 3468, 3540, 3724, 4125, 4144, 4248
Offset: 1

Views

Author

Gus Wiseman, May 23 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n).

Examples

			The term 70 is in the sequence because it has 8 divisors {1, 2, 5, 7, 10, 14, 35, 70} and its sum of prime indices is also 1 + 3 + 4 = 8.
The sequence of terms together with their prime indices begins:
     3: {2}
    10: {1,3}
    28: {1,1,4}
    66: {1,2,5}
    70: {1,3,4}
    88: {1,1,1,5}
   208: {1,1,1,1,6}
   228: {1,1,2,8}
   306: {1,2,2,7}
   340: {1,1,3,7}
   364: {1,1,4,6}
   490: {1,3,4,4}
   495: {2,2,3,5}
   525: {2,3,3,4}
   544: {1,1,1,1,1,7}
   550: {1,3,3,5}
   675: {2,2,2,3,3}
   744: {1,1,1,2,11}
   870: {1,2,3,10}
   966: {1,2,4,9}
		

Crossrefs

Positions of 0's in A325794.
Contains A239885 except for 1.

Programs

  • Maple
    filter:= proc(n) local F,t;
      F:= ifactors(n)[2];
      add(numtheory:-pi(t[1])*t[2],t=F) = mul(t[2]+1,t=F)
    end proc:
    select(filter, [$1..10000]); # Robert Israel, Oct 16 2023
  • Mathematica
    Select[Range[100],DivisorSigma[0,#]==Total[Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]]&]

A325836 Number of integer partitions of n having n - 1 different submultisets.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 0, 3, 0, 5, 2, 2, 0, 15, 0, 2, 3, 25, 0, 17, 0, 18, 3, 2, 0, 150, 0, 2, 13, 24, 0, 43, 0, 351, 3, 2, 2, 383, 0, 2, 3, 341, 0, 60, 0, 37, 51, 2, 0, 3733, 0, 31, 3, 42, 0, 460, 1, 633, 3, 2, 0, 1780, 0, 2, 68, 12460, 0, 87, 0, 55, 3
Offset: 0

Views

Author

Gus Wiseman, May 29 2019

Keywords

Comments

The number of submultisets of a partition is the product of its multiplicities, each plus one.
The Heinz numbers of these partitions are given by A325694.

Examples

			The a(3) = 1 through a(13) = 15 partitions (empty columns not shown):
  (3)  (22)  (32)  (322)  (432)   (3322)  (32222)  (4432)
             (41)  (331)  (531)   (4411)  (71111)  (5332)
                   (511)  (621)                    (5422)
                          (3222)                   (5521)
                          (6111)                   (6322)
                                                   (6331)
                                                   (6511)
                                                   (7411)
                                                   (8221)
                                                   (8311)
                                                   (9211)
                                                   (33322)
                                                   (55111)
                                                   (322222)
                                                   (811111)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0 or i=1,
          `if`(n=p-1, 1, 0), add(`if`(irem(p, j+1, 'r')=0,
          (w-> b(w, min(w, i-1), r))(n-i*j), 0), j=0..n/i))
        end:
    a:= n-> b(n$2,n-1):
    seq(a(n), n=0..80);  # Alois P. Heinz, Aug 17 2019
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Times@@(1+Length/@Split[#])==n-1&]],{n,0,30}]
    (* Second program: *)
    b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1,
         If[n == p - 1, 1, 0], Sum[If[Mod[p, j + 1] == 0, r = p/(j + 1);
         Function[w, b[w, Min[w, i - 1], r]][n - i*j], 0], {j, 0, n/i}]];
    a[n_] := b[n, n, n-1];
    a /@ Range[0, 80] (* Jean-François Alcover, May 12 2021, after Alois P. Heinz *)

A365920 Greatest non-subset-sum of the prime indices of n, or 0 if there is none.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 3, 0, 3, 2, 4, 0, 5, 3, 4, 0, 6, 0, 7, 0, 5, 4, 8, 0, 5, 5, 5, 3, 9, 0, 10, 0, 6, 6, 6, 0, 11, 7, 7, 0, 12, 0, 13, 4, 6, 8, 14, 0, 7, 5, 8, 5, 15, 0, 7, 0, 9, 9, 16, 0, 17, 10, 7, 0, 8, 4, 18, 6, 10, 6, 19, 0, 20, 11, 7, 7, 8, 5, 21, 0, 7, 12
Offset: 1

Views

Author

Gus Wiseman, Sep 30 2023

Keywords

Comments

This is the greatest element of {0,...,A056239(n)} that is not equal to A056239(d) for any divisor d|n, d>1. This definition is analogous to the Frobenius number of a numerical semigroup (see link), but it looks only at submultisets of a finite multiset, not all multisets of elements of a set.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 156 are {1,1,2,6}, with subset-sums 0, 1, 2, 3, 4, 6, 7, 8, 9, 10, so a(156) = 5.
		

Crossrefs

For binary indices instead of sums we have A063250.
Positions of first appearances > 2 are A065091.
Zeros are A325781, nonzeros A325798.
For prime indices instead of sums we have A339662, minimum A257993.
For least instead of greatest non-subset-sum we have A366128.
A055932 lists numbers whose prime indices cover an initial interval.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gap-free prime indices.
A238709/A238710 count partitions by least/greatest difference.
A342050/A342051 have prime indices with odd/even least gap.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    nmz[y_]:=Complement[Range[Total[y]],Total/@Subsets[y]];
    Table[Max@@Prepend[nmz[prix[n]],0],{n,100}]

A325834 Number of integer partitions of n whose number of submultisets is less than or equal to n.

Original entry on oeis.org

0, 0, 1, 1, 3, 3, 6, 7, 12, 14, 21, 21, 37, 43, 51, 56, 90, 98, 130, 143, 180, 200, 230, 249, 403, 454, 508, 555, 657, 706, 826, 889, 1295, 1406, 1568, 1690, 2194, 2396, 2603, 2841, 3387, 3672, 4024, 4344, 4693, 5079, 5489, 5840, 9731, 10424, 11336, 12093
Offset: 0

Views

Author

Gus Wiseman, May 29 2019

Keywords

Comments

The number of submultisets of a partition is the product of its multiplicities, each plus one.
The Heinz numbers of these partitions are given by A325798.

Examples

			The a(2) = 1 through a(9) = 14 partitions:
  (2)  (3)  (4)   (5)   (6)    (7)    (8)     (9)
            (22)  (32)  (33)   (43)   (44)    (54)
            (31)  (41)  (42)   (52)   (53)    (63)
                        (51)   (61)   (62)    (72)
                        (222)  (322)  (71)    (81)
                        (411)  (331)  (332)   (333)
                               (511)  (422)   (432)
                                      (431)   (441)
                                      (521)   (522)
                                      (611)   (531)
                                      (2222)  (621)
                                      (5111)  (711)
                                              (3222)
                                              (6111)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0 or i=1,
          `if`(n=p-1, 1, 0), add(`if`(irem(p, j+1, 'r')=0,
          (w-> b(w, min(w, i-1), r))(n-i*j), 0), j=0..n/i))
        end:
    a:= n-> add(b(n$2, k), k=0..n):
    seq(a(n), n=0..55);  # Alois P. Heinz, Aug 17 2019
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Times@@(1+Length/@Split[#])<=n&]],{n,0,30}]
    (* Second program: *)
    b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, If[n == p - 1, 1, 0], Sum[If[Mod[p, j + 1] == 0, Function[w, b[w, Min[w, i - 1], Quotient[p, j + 1]]][n - i*j], 0], {j, 0, n/i}]];
    a[n_] := Sum[b[n, n, k], {k, 0, n}];
    a /@ Range[0, 55] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

Formula

a(n) = A000041(n) - A325831(n).
For n even, A325833(n) = a(n) - A325830(n/2); for n odd, A325833(n) = a(n).

A088881 If A056239(m) = n, then a(n) is the maximum value of A000005(m).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 12, 16, 20, 24, 30, 36, 42, 48, 60, 72, 84, 96, 112, 128, 144, 168, 192, 224, 256, 288, 336, 384, 432, 480, 540, 600, 672, 768, 864, 960, 1080, 1200, 1320, 1440, 1620, 1800, 1980, 2160, 2400, 2640, 2880, 3240, 3600, 3960, 4320, 4800, 5280
Offset: 0

Views

Author

Naohiro Nomoto, Nov 28 2003

Keywords

Comments

Maximum number of submultisets among all integer partitions of n. - Gus Wiseman, Jun 30 2019

Examples

			The partition (3,2,1,1,1) has 16 submultisets, which is more than for any other partition of 8, so a(8) = 16. - _Gus Wiseman_, Jun 30 2019
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i<2, n+1,
           max(seq((j+1)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n, n):
    seq (a(n), n=0..100);  # Alois P. Heinz, Aug 09 2012
  • Mathematica
    $RecursionLimit = 1000; b[n_, i_] :=  b[n, i] = If[n == 0 || i<2, n+1, Max[Table[ (j+1)*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table [a[n], {n, 0, 100}] (* Jean-François Alcover, Apr 15 2015, after Alois P. Heinz *)
    Table[Max@@(Times@@(1+Length/@Split[#])&)/@IntegerPartitions[n],{n,0,30}] (* Gus Wiseman, Jun 30 2019 *)

A325794 Number of divisors of n minus the sum of prime indices of n.

Original entry on oeis.org

1, 1, 0, 1, -1, 1, -2, 1, -1, 0, -3, 2, -4, -1, -1, 1, -5, 1, -6, 1, -2, -2, -7, 3, -3, -3, -2, 0, -8, 2, -9, 1, -3, -4, -3, 3, -10, -5, -4, 2, -11, 1, -12, -1, -1, -6, -13, 4, -5, -1, -5, -2, -14, 1, -4, 1, -6, -7, -15, 5, -16, -8, -2, 1, -5, 0, -17, -3, -7
Offset: 1

Views

Author

Gus Wiseman, May 23 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n).

Crossrefs

Positions of positive terms are A325795.
Positions of nonnegative terms are A325796.
Positions of negative terms are A325797.
Positions of nonpositive terms are A325798.
Positions of 1's are A325792.
Positions of 0's are A325793.
Positions of -1's are A325694.

Programs

  • Mathematica
    Table[DivisorSigma[0,n]-Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]],{n,100}]
  • PARI
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }
    A325794(n) = (numdiv(n)-A056239(n)); \\ Antti Karttunen, May 26 2019

Formula

a(n) = A000005(n) - A056239(n).
Showing 1-10 of 15 results. Next