cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A325694 Numbers with one fewer divisors than the sum of their prime indices.

Original entry on oeis.org

5, 9, 14, 15, 44, 45, 50, 78, 104, 105, 110, 135, 196, 225, 272, 276, 342, 380, 405, 476, 572, 585, 608, 650, 693, 726, 735, 825, 888, 930, 968, 1125, 1215, 1218, 1240, 1472, 1476, 1482, 1518, 1566, 1610, 1624, 1976, 1995, 2024, 2090, 2210, 2256, 2565, 2618
Offset: 1

Views

Author

Gus Wiseman, May 23 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n).
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of the partitions counted by A325836.

Examples

			The sequence of terms together with their prime indices begins:
     5: {3}
     9: {2,2}
    14: {1,4}
    15: {2,3}
    44: {1,1,5}
    45: {2,2,3}
    50: {1,3,3}
    78: {1,2,6}
   104: {1,1,1,6}
   105: {2,3,4}
   110: {1,3,5}
   135: {2,2,2,3}
   196: {1,1,4,4}
   225: {2,2,3,3}
   272: {1,1,1,1,7}
   276: {1,1,2,9}
   342: {1,2,2,8}
   380: {1,1,3,8}
   405: {2,2,2,2,3}
   476: {1,1,4,7}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],DivisorSigma[0,#]==Total[Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]]-1&]

A325792 Positive integers with as many proper divisors as the sum of their prime indices.

Original entry on oeis.org

1, 2, 4, 6, 8, 16, 18, 20, 32, 42, 54, 56, 64, 100, 128, 162, 176, 204, 234, 256, 260, 294, 308, 315, 350, 392, 416, 486, 500, 512, 690, 696, 798, 920, 1024, 1026, 1064, 1088, 1116, 1122, 1190, 1365, 1430, 1458, 1496, 1755, 1936, 1968, 2025, 2048, 2058, 2079
Offset: 1

Views

Author

Gus Wiseman, May 23 2019

Keywords

Comments

First differs from A325780 in having 204.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n).

Examples

			The term 42 is in the sequence because it has 7 proper divisors (1, 2, 3, 6, 7, 14, 21) and its sum of prime indices is also 1 + 2 + 4 = 7.
The sequence of terms together with their prime indices begins:
     1: {}
     2: {1}
     4: {1,1}
     6: {1,2}
     8: {1,1,1}
    16: {1,1,1,1}
    18: {1,2,2}
    20: {1,1,3}
    32: {1,1,1,1,1}
    42: {1,2,4}
    54: {1,2,2,2}
    56: {1,1,1,4}
    64: {1,1,1,1,1,1}
   100: {1,1,3,3}
   128: {1,1,1,1,1,1,1}
   162: {1,2,2,2,2}
   176: {1,1,1,1,5}
   204: {1,1,2,7}
   234: {1,2,2,6}
   256: {1,1,1,1,1,1,1,1}
		

Crossrefs

Positions of 1's in A325794.
Heinz numbers of the partitions counted by A325828.

Programs

  • Mathematica
    Select[Range[100],DivisorSigma[0,#]-1==Total[Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]]&]

A325799 Sum of the prime indices of n minus the number of distinct positive subset-sums of the prime indices of n.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 3, 0, 2, 1, 4, 0, 5, 2, 2, 0, 6, 0, 7, 0, 3, 3, 8, 0, 4, 4, 3, 1, 9, 0, 10, 0, 4, 5, 4, 0, 11, 6, 5, 0, 12, 0, 13, 2, 2, 7, 14, 0, 6, 2, 6, 3, 15, 0, 5, 0, 7, 8, 16, 0, 17, 9, 4, 0, 6, 1, 18, 4, 8, 2, 19, 0, 20, 10, 3, 5, 6, 2, 21, 0, 4, 11
Offset: 1

Views

Author

Gus Wiseman, May 23 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n). A positive subset-sum of an integer partition is any sum of a nonempty submultiset of it.

Examples

			The prime indices of 21 are {2,4}, with positive subset-sums {2,4,6}, so a(21) = 6 - 3 = 3.
		

Crossrefs

Positions of 1's are A325800.
Positions of nonzero terms are A325798.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p] k]];
    Table[hwt[n]-Length[Union[hwt/@Rest[Divisors[n]]]],{n,30}]

Formula

a(n) = A056239(n) - A304793(n).

A325798 Numbers with at most as many divisors as the sum of their prime indices.

Original entry on oeis.org

3, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89
Offset: 1

Views

Author

Gus Wiseman, May 23 2019

Keywords

Comments

First differs from the complement of A325781 in lacking 156.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n).

Examples

			The sequence of terms together with their prime indices begins:
   3: {2}
   5: {3}
   7: {4}
   9: {2,2}
  10: {1,3}
  11: {5}
  13: {6}
  14: {1,4}
  15: {2,3}
  17: {7}
  19: {8}
  21: {2,4}
  22: {1,5}
  23: {9}
  25: {3,3}
  26: {1,6}
  27: {2,2,2}
  28: {1,1,4}
  29: {10}
  31: {11}
		

Crossrefs

Positions of nonpositive terms in A325794.
Heinz numbers of the partitions counted by A325834.

Programs

  • Mathematica
    Select[Range[100],DivisorSigma[0,#]<=Total[Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]]&]

A325793 Positive integers whose number of divisors is equal to their sum of prime indices.

Original entry on oeis.org

3, 10, 28, 66, 70, 88, 208, 228, 306, 340, 364, 490, 495, 525, 544, 550, 675, 744, 870, 966, 1160, 1216, 1242, 1254, 1288, 1326, 1330, 1332, 1672, 1768, 1785, 1870, 2002, 2064, 2145, 2295, 2457, 2900, 2944, 3250, 3280, 3430, 3468, 3540, 3724, 4125, 4144, 4248
Offset: 1

Views

Author

Gus Wiseman, May 23 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n).

Examples

			The term 70 is in the sequence because it has 8 divisors {1, 2, 5, 7, 10, 14, 35, 70} and its sum of prime indices is also 1 + 3 + 4 = 8.
The sequence of terms together with their prime indices begins:
     3: {2}
    10: {1,3}
    28: {1,1,4}
    66: {1,2,5}
    70: {1,3,4}
    88: {1,1,1,5}
   208: {1,1,1,1,6}
   228: {1,1,2,8}
   306: {1,2,2,7}
   340: {1,1,3,7}
   364: {1,1,4,6}
   490: {1,3,4,4}
   495: {2,2,3,5}
   525: {2,3,3,4}
   544: {1,1,1,1,1,7}
   550: {1,3,3,5}
   675: {2,2,2,3,3}
   744: {1,1,1,2,11}
   870: {1,2,3,10}
   966: {1,2,4,9}
		

Crossrefs

Positions of 0's in A325794.
Contains A239885 except for 1.

Programs

  • Maple
    filter:= proc(n) local F,t;
      F:= ifactors(n)[2];
      add(numtheory:-pi(t[1])*t[2],t=F) = mul(t[2]+1,t=F)
    end proc:
    select(filter, [$1..10000]); # Robert Israel, Oct 16 2023
  • Mathematica
    Select[Range[100],DivisorSigma[0,#]==Total[Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]]&]

A325795 Numbers with more divisors than the sum of their prime indices.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 30, 32, 36, 40, 42, 48, 54, 56, 60, 64, 72, 80, 84, 90, 96, 100, 108, 112, 120, 126, 128, 132, 140, 144, 150, 156, 160, 162, 168, 176, 180, 192, 198, 200, 204, 210, 216, 220, 224, 234, 240, 252, 256, 260, 264, 270, 280, 288
Offset: 1

Views

Author

Gus Wiseman, May 23 2019

Keywords

Comments

First differs from A325781 in having 156.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n).

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   30: {1,2,3}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   56: {1,1,1,4}
   60: {1,1,2,3}
   64: {1,1,1,1,1,1}
		

Crossrefs

Positions of positive terms in A325794.
Heinz numbers of the partitions counted by A325831.

Programs

  • Mathematica
    Select[Range[100],DivisorSigma[0,#]>Total[Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]]&]

A325796 Numbers with at least as many divisors as the sum of their prime indices.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54, 56, 60, 64, 66, 70, 72, 80, 84, 88, 90, 96, 100, 108, 112, 120, 126, 128, 132, 140, 144, 150, 156, 160, 162, 168, 176, 180, 192, 198, 200, 204, 208, 210, 216, 220, 224, 228, 234, 240
Offset: 1

Views

Author

Gus Wiseman, May 23 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n).

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
   10: {1,3}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   28: {1,1,4}
   30: {1,2,3}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
		

Crossrefs

Positions of nonnegative terms in A325794.
Heinz numbers of the partitions counted by A325832.

Programs

  • Mathematica
    Select[Range[100],DivisorSigma[0,#]>=Total[Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]]&]

A325797 Numbers with fewer divisors than the sum of their prime indices.

Original entry on oeis.org

5, 7, 9, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97
Offset: 1

Views

Author

Gus Wiseman, May 23 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n).

Examples

			The sequence of terms together with their prime indices begins:
   5: {3}
   7: {4}
   9: {2,2}
  11: {5}
  13: {6}
  14: {1,4}
  15: {2,3}
  17: {7}
  19: {8}
  21: {2,4}
  22: {1,5}
  23: {9}
  25: {3,3}
  26: {1,6}
  27: {2,2,2}
  29: {10}
  31: {11}
  33: {2,5}
  34: {1,7}
  35: {3,4}
		

Crossrefs

Positions of negative terms in A325794.
Heinz numbers of the partitions counted by A325833.

Programs

  • Mathematica
    Select[Range[100],DivisorSigma[0,#]PrimePi[p]*k]]&]
Showing 1-8 of 8 results.