A325694
Numbers with one fewer divisors than the sum of their prime indices.
Original entry on oeis.org
5, 9, 14, 15, 44, 45, 50, 78, 104, 105, 110, 135, 196, 225, 272, 276, 342, 380, 405, 476, 572, 585, 608, 650, 693, 726, 735, 825, 888, 930, 968, 1125, 1215, 1218, 1240, 1472, 1476, 1482, 1518, 1566, 1610, 1624, 1976, 1995, 2024, 2090, 2210, 2256, 2565, 2618
Offset: 1
The sequence of terms together with their prime indices begins:
5: {3}
9: {2,2}
14: {1,4}
15: {2,3}
44: {1,1,5}
45: {2,2,3}
50: {1,3,3}
78: {1,2,6}
104: {1,1,1,6}
105: {2,3,4}
110: {1,3,5}
135: {2,2,2,3}
196: {1,1,4,4}
225: {2,2,3,3}
272: {1,1,1,1,7}
276: {1,1,2,9}
342: {1,2,2,8}
380: {1,1,3,8}
405: {2,2,2,2,3}
476: {1,1,4,7}
Cf.
A000005,
A056239,
A112798,
A325780,
A325792,
A325793,
A325794,
A325795,
A325796,
A325797,
A325798,
A325836.
-
Select[Range[1000],DivisorSigma[0,#]==Total[Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]]-1&]
A325792
Positive integers with as many proper divisors as the sum of their prime indices.
Original entry on oeis.org
1, 2, 4, 6, 8, 16, 18, 20, 32, 42, 54, 56, 64, 100, 128, 162, 176, 204, 234, 256, 260, 294, 308, 315, 350, 392, 416, 486, 500, 512, 690, 696, 798, 920, 1024, 1026, 1064, 1088, 1116, 1122, 1190, 1365, 1430, 1458, 1496, 1755, 1936, 1968, 2025, 2048, 2058, 2079
Offset: 1
The term 42 is in the sequence because it has 7 proper divisors (1, 2, 3, 6, 7, 14, 21) and its sum of prime indices is also 1 + 2 + 4 = 7.
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
4: {1,1}
6: {1,2}
8: {1,1,1}
16: {1,1,1,1}
18: {1,2,2}
20: {1,1,3}
32: {1,1,1,1,1}
42: {1,2,4}
54: {1,2,2,2}
56: {1,1,1,4}
64: {1,1,1,1,1,1}
100: {1,1,3,3}
128: {1,1,1,1,1,1,1}
162: {1,2,2,2,2}
176: {1,1,1,1,5}
204: {1,1,2,7}
234: {1,2,2,6}
256: {1,1,1,1,1,1,1,1}
Heinz numbers of the partitions counted by
A325828.
-
Select[Range[100],DivisorSigma[0,#]-1==Total[Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]]&]
A325798
Numbers with at most as many divisors as the sum of their prime indices.
Original entry on oeis.org
3, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89
Offset: 1
The sequence of terms together with their prime indices begins:
3: {2}
5: {3}
7: {4}
9: {2,2}
10: {1,3}
11: {5}
13: {6}
14: {1,4}
15: {2,3}
17: {7}
19: {8}
21: {2,4}
22: {1,5}
23: {9}
25: {3,3}
26: {1,6}
27: {2,2,2}
28: {1,1,4}
29: {10}
31: {11}
Positions of nonpositive terms in
A325794.
Heinz numbers of the partitions counted by
A325834.
-
Select[Range[100],DivisorSigma[0,#]<=Total[Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]]&]
A325793
Positive integers whose number of divisors is equal to their sum of prime indices.
Original entry on oeis.org
3, 10, 28, 66, 70, 88, 208, 228, 306, 340, 364, 490, 495, 525, 544, 550, 675, 744, 870, 966, 1160, 1216, 1242, 1254, 1288, 1326, 1330, 1332, 1672, 1768, 1785, 1870, 2002, 2064, 2145, 2295, 2457, 2900, 2944, 3250, 3280, 3430, 3468, 3540, 3724, 4125, 4144, 4248
Offset: 1
The term 70 is in the sequence because it has 8 divisors {1, 2, 5, 7, 10, 14, 35, 70} and its sum of prime indices is also 1 + 3 + 4 = 8.
The sequence of terms together with their prime indices begins:
3: {2}
10: {1,3}
28: {1,1,4}
66: {1,2,5}
70: {1,3,4}
88: {1,1,1,5}
208: {1,1,1,1,6}
228: {1,1,2,8}
306: {1,2,2,7}
340: {1,1,3,7}
364: {1,1,4,6}
490: {1,3,4,4}
495: {2,2,3,5}
525: {2,3,3,4}
544: {1,1,1,1,1,7}
550: {1,3,3,5}
675: {2,2,2,3,3}
744: {1,1,1,2,11}
870: {1,2,3,10}
966: {1,2,4,9}
-
filter:= proc(n) local F,t;
F:= ifactors(n)[2];
add(numtheory:-pi(t[1])*t[2],t=F) = mul(t[2]+1,t=F)
end proc:
select(filter, [$1..10000]); # Robert Israel, Oct 16 2023
-
Select[Range[100],DivisorSigma[0,#]==Total[Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]]&]
A325831
Number of integer partitions of n whose number of submultisets is greater than n.
Original entry on oeis.org
1, 1, 1, 2, 2, 4, 5, 8, 10, 16, 21, 35, 40, 58, 84, 120, 141, 199, 255, 347, 447, 592, 772, 1006, 1172, 1504, 1928, 2455, 3061, 3859, 4778, 5953, 7054, 8737, 10742, 13193, 15783, 19241, 23412, 28344, 33951, 40911, 49150, 58917, 70482, 84055, 100069, 118914
Offset: 0
The a(1) = 1 through a(8) = 10 partitions:
(1) (11) (21) (211) (221) (321) (421) (3221)
(111) (1111) (311) (2211) (2221) (3311)
(2111) (3111) (3211) (4211)
(11111) (21111) (4111) (22211)
(111111) (22111) (32111)
(31111) (41111)
(211111) (221111)
(1111111) (311111)
(2111111)
(11111111)
Cf.
A002033,
A098859,
A126796,
A325694,
A325792,
A325795,
A325828,
A325830,
A325832,
A325833,
A325834,
A325836.
-
b:= proc(n, i, p) option remember; `if`(n=0 or i=1,
`if`(n=p-1, 1, 0), add(`if`(irem(p, j+1, 'r')=0,
(w-> b(w, min(w, i-1), r))(n-i*j), 0), j=0..n/i))
end:
a:= n-> combinat[numbpart](n)-add(b(n$2, k), k=0..n):
seq(a(n), n=0..55); # Alois P. Heinz, Aug 17 2019
-
Table[Length[Select[IntegerPartitions[n],Times@@(1+Length/@Split[#])>n&]],{n,0,30}]
(* Second program: *)
b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1,
If[n == p - 1, 1, 0], Sum[If[Mod[p, j + 1] == 0,
Function[w, b[w, Min[w, i-1], p/(j+1)]][n-i*j], 0], {j, 0, n/i}]];
a[n_] := PartitionsP[n] - Sum[b[n, n, k], {k, 0, n}];
a /@ Range[0, 55] (* Jean-François Alcover, May 13 2021, after Alois P. Heinz *)
A325794
Number of divisors of n minus the sum of prime indices of n.
Original entry on oeis.org
1, 1, 0, 1, -1, 1, -2, 1, -1, 0, -3, 2, -4, -1, -1, 1, -5, 1, -6, 1, -2, -2, -7, 3, -3, -3, -2, 0, -8, 2, -9, 1, -3, -4, -3, 3, -10, -5, -4, 2, -11, 1, -12, -1, -1, -6, -13, 4, -5, -1, -5, -2, -14, 1, -4, 1, -6, -7, -15, 5, -16, -8, -2, 1, -5, 0, -17, -3, -7
Offset: 1
Positions of positive terms are
A325795.
Positions of nonnegative terms are
A325796.
Positions of negative terms are
A325797.
Positions of nonpositive terms are
A325798.
-
Table[DivisorSigma[0,n]-Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]],{n,100}]
-
A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }
A325794(n) = (numdiv(n)-A056239(n)); \\ Antti Karttunen, May 26 2019
A325796
Numbers with at least as many divisors as the sum of their prime indices.
Original entry on oeis.org
1, 2, 3, 4, 6, 8, 10, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54, 56, 60, 64, 66, 70, 72, 80, 84, 88, 90, 96, 100, 108, 112, 120, 126, 128, 132, 140, 144, 150, 156, 160, 162, 168, 176, 180, 192, 198, 200, 204, 208, 210, 216, 220, 224, 228, 234, 240
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
4: {1,1}
6: {1,2}
8: {1,1,1}
10: {1,3}
12: {1,1,2}
16: {1,1,1,1}
18: {1,2,2}
20: {1,1,3}
24: {1,1,1,2}
28: {1,1,4}
30: {1,2,3}
32: {1,1,1,1,1}
36: {1,1,2,2}
40: {1,1,1,3}
42: {1,2,4}
48: {1,1,1,1,2}
54: {1,2,2,2}
Positions of nonnegative terms in
A325794.
Heinz numbers of the partitions counted by
A325832.
-
Select[Range[100],DivisorSigma[0,#]>=Total[Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]]&]
A325797
Numbers with fewer divisors than the sum of their prime indices.
Original entry on oeis.org
5, 7, 9, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97
Offset: 1
The sequence of terms together with their prime indices begins:
5: {3}
7: {4}
9: {2,2}
11: {5}
13: {6}
14: {1,4}
15: {2,3}
17: {7}
19: {8}
21: {2,4}
22: {1,5}
23: {9}
25: {3,3}
26: {1,6}
27: {2,2,2}
29: {10}
31: {11}
33: {2,5}
34: {1,7}
35: {3,4}
Positions of negative terms in
A325794.
Heinz numbers of the partitions counted by
A325833.
A359420
Numbers that are both practical (A005153) and phi-practical (A260653).
Original entry on oeis.org
1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 30, 32, 36, 40, 42, 48, 54, 56, 60, 64, 72, 80, 84, 90, 96, 100, 108, 112, 120, 126, 128, 132, 140, 144, 150, 156, 160, 162, 168, 176, 180, 192, 198, 200, 208, 210, 216, 220, 224, 234, 240, 252, 256, 260, 264, 270, 272, 280, 288
Offset: 1
-
f[p_, e_] := (p^(e + 1) - 1)/(p - 1); pracQ[n_] := (ind = Position[(fct = FactorInteger[n])[[;; , 1]]/(1 + FoldList[Times, 1, f @@@ Most@fct]), _?(# > 1 &)]) == {};
phiPracticalQ[n_] := If[n == 1, True, (lst = Sort@EulerPhi@Divisors[n]; ok = True; Do[If[lst[[m]] > Sum[lst[[l]], {l, 1, m - 1}] + 1, (ok = False; Break[])], {m, 1, Length[lst]}]; ok)]; (* Frank M Jackson's code at A260653 *)
Select[Range[300], pracQ[#] && phiPracticalQ[#] &]
Showing 1-9 of 9 results.
Comments