A007401 Add n-1 to n-th term of 'n appears n times' sequence (A002024).
1, 3, 4, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76
Offset: 1
Examples
From _Boris Putievskiy_, Jan 14 2013: (Start) The start of the sequence as table: 1, 3, 6, 10, 15, 21, 28, ... 4, 7, 11, 16, 22, 29, 37, ... 8, 12, 17, 23, 30, 38, 47, ... 13, 18, 24, 31, 39, 48, 58, ... 19, 25, 32, 40, 49, 59, 70, ... 26, 33, 41, 50, 60, 71, 83, ... 34, 42, 51, 61, 72, 84, 97, ... ... The start of the sequence as triangle array read by rows: 1; 3, 4; 6, 7, 8; 10, 11, 12, 13; 15, 16, 17, 18, 19; 21, 22, 23, 24, 25, 26; 28, 29, 30, 31, 32, 33, 34; ... Row number r contains r numbers r*(r+1)/2, r*(r+1)/2+1, ..., r*(r+1)/2+r-1. (End)
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
- J. Riordan, The enumeration of trees by height and diameter, IBM Journal 4 (1960), 473-478. (Annotated scanned copy)
- T. R. S. Walsh & N. J. A. Sloane, Correspondence, 1991
- T. R. S. Walsh, Data (Preprint 1, Part 1)
- T. R. S. Walsh, Data (Preprint 1, Part 2)
- T. R. S. Walsh, Data (Preprint 1, Part 3)
- T. R. S. Walsh, Notes
- T. R. S. Walsh, Number of sensed planar maps with n edges and m vertices
- N. C. Wormald, On the number of planar maps, Can. J. Math. 33.1 (1981), 1-11. (Annotated scanned copy)
Programs
-
Haskell
a007401 n = a007401_list !! n a007701_list = [x | x <- [0..], a023531 x == 0] -- Reinhard Zumkeller, Feb 14 2015, Dec 04 2012
-
Mathematica
f[n_] := n + Floor[ Sqrt[2n] - 1/2]; Array[f, 66]; (* Robert G. Wilson v, Feb 13 2011 *)
-
PARI
a(n)=n+floor(sqrt(n+n)-1/2) \\ Charles R Greathouse IV, Feb 13 2011
-
PARI
for(m=1,9, for(n=m*(m+1)/2,(m^2+3*m-2)/2, print1(n", "))) \\ Charles R Greathouse IV, Feb 13 2011
-
Python
from math import isqrt def A007401(n): return n-1+(isqrt(n<<3)+1>>1) # Chai Wah Wu, Oct 18 2022
Formula
From Boris Putievskiy, Jan 14 2013: (Start)
a(n) = A014132(n) - 1.
a(n) = ((t+2)^2 + i - j)/2-1, where
i = n-t*(t+1)/2,
j = (t*t+3*t+4)/2-n,
t = floor((-1+sqrt(8*n-7))/2). (End)
Comments