cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A232773 Permanent of the n X n matrix with numbers 1,2,...,n^2 in order across rows.

Original entry on oeis.org

1, 1, 10, 450, 55456, 14480700, 6878394720, 5373548250000, 6427291156586496, 11157501095973529920, 26968983444160450560000, 87808164603589940623344000, 374818412822626584819196231680, 2050842983500342507649178541536000, 14112022767608502582976078751055052800
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (-1)^n*add(n^k*Stirling1(n, n-k)*
            Stirling1(n+1, k+1)*(n-k)!*k!, k=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Dec 02 2013
  • Mathematica
    Table[(-1)^n * Sum[n^k * StirlingS1[n, n-k] * StirlingS1[n+1, k+1] * (n-k)! * k!,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec after Max Alekseyev, Nov 30 2013 *)
  • PARI
    a(n) = (-1)^n * sum(k=0,n, n^k * stirling(n,n-k) * stirling(n+1,k+1) * (n-k)! * k! ) /* Max Alekseyev, Nov 30 2013 */
    
  • Python
    from sympy.functions.combinatorial.numbers import stirling, factorial
    def A232773(n): return abs(sum(n**k*stirling(n,n-k,kind=1,signed=True)*stirling(n+1,k+1,kind=1,signed=True)*factorial(n-k)*factorial(k) for k in range(n+1))) # Chai Wah Wu, Mar 25 2025

Formula

a(n) = (-1)^n * Sum_{k=0..n} n^k * Stirling1(n,n-k) * Stirling1(n+1,k+1) * (n-k)! * k!. - Max Alekseyev, Nov 30 2013
Limit_{n->oo} a(n)^(1/n)/n^3 = exp(-2). - Vaclav Kotesovec, Nov 30 2013
a(n) = A232788(n)*n!!, where n!! = A006882(n) is the double-factorial. - M. F. Hasler, Nov 30 2013

Extensions

More terms from W. Edwin Clark, Nov 30 2013
a(0)=1 prepended by Alois P. Heinz, Dec 02 2013

A232818 Triangle of coefficients of polynomials equal permanent of the n X n matrix [1,2,...,n; n*x+1, n*x+2, ..., n*x+n; ...; (n-1)*n*x+1, (n-1)*n*x+2, ...,(n-1)*n*x+n].

Original entry on oeis.org

1, 6, 4, 216, 198, 36, 23040, 24640, 7200, 576, 5400000, 6375000, 2362500, 328800, 14400, 2351462400, 2982873600, 1285956000, 238533120, 19051200, 518400, 1707698764800, 2291162509440, 1100516981760, 245735819280, 27025656000, 1383117120, 25401600
Offset: 1

Views

Author

Vladimir Shevelev, Nov 30 2013

Keywords

Comments

The degree of n-th polynomial is n-1.
Its leading coefficient is T(n,1) = n^n*(n-1)!^2*(n+1)/2. - M. F. Hasler, Dec 01 2013

Examples

			                                   1
                           6*x +   4
              216*x^2 +  198*x +  36
23040*x^3 + 24640*x^2 + 7200*x + 576
              ......
		

Crossrefs

Programs

  • Mathematica
    p[n_,x_]:=(-1)^n Sum[n^k x^k StirlingS1[n,n-k]StirlingS1[n+1,k+1](n-k)!k!,{k,0,n-1}];Flatten[Table[Reverse[CoefficientList[p[n,x],x]],{n,8}]] (* Peter J. C. Moses, Nov 30 2013 *)
  • PARI
    P(n)=(-1)^n*sum(k=0,n-1,n^k*x^k*stirling(n,n-k)*stirling(n+1,k+1)*(n-k)!*k!)
    apply(t->Vec(t),vector(7,n,P(n))) /* M. F. Hasler, Dec 01 2013 */

Formula

P_n(x) = (-1)^n * Sum_{k=0..n-1} c_k(n) * x^k, where c_k(n)= n^k * Stirling1(n,n-k) * Stirling1(n+1,k+1) * (n-k)! * k!.
P_n(1) = A232773; P_n(0) = n!^2, P_n(1/n) = A204248(n) is permanent of n X n Toeplitz matrix with the first row n,n-1,...,1 (see our comment in A204248).

Extensions

More terms from Peter J. C. Moses, Nov 30 2013

A357279 a(n) is the hafnian of the 2n X 2n symmetric matrix defined by M[i, j] = i + j - 1.

Original entry on oeis.org

1, 2, 43, 2610, 312081, 61825050, 18318396195, 7586241152490, 4184711271725985, 2965919152834367730, 2626408950849351178875
Offset: 0

Views

Author

Stefano Spezia, Sep 25 2022

Keywords

Comments

The n X n matrix M is the n-th principal submatrix of A002024 considered as an array, and it is singular for n > 2.

Examples

			a(2) = 43 because the hafnian of
    1  2  3  4
    2  3  4  5
    3  4  5  6
    4  5  6  7
equals M_{1,2}*M_{3,4} + M_{1,3}*M_{2,4} + M_{1,4}*M_{2,3} = 43.
		

Crossrefs

Cf. A002024, A002415 (absolute value of the coefficient of x^(n-2) in the characteristic polynomial of M(n)), A095833 (k-th super- and subdiagonal sums of the matrix M(n)), A204248 (permanent of M(n)).

Programs

  • Mathematica
    M[i_, j_, n_]:=Part[Part[Table[r+c-1,{r,n},{c,n}], i], j]; a[n_]:=Sum[Product[M[Part[PermutationList[s, 2n], 2i-1], Part[PermutationList[s, 2n], 2i], 2n], {i, n}], {s, SymmetricGroup[2n]//GroupElements}]/(n!*2^n); Array[a, 6, 0]
  • PARI
    tm(n) = matrix(n, n, i, j, i+j-1);
    a(n) = my(m = tm(2*n), s=0); forperm([1..2*n], p, s += prod(j=1, n, m[p[2*j-1], p[2*j]]); ); s/(n!*2^n); \\ Michel Marcus, May 02 2023

Extensions

a(6) from Michel Marcus, May 02 2023
a(7)-a(10) from Pontus von Brömssen, Oct 14 2023

A226057 E.g.f. A(x) satisfies: A(x)^2 = -x*log(1-A(x)) where A(x) = Sum_{n>=1} a(n)*x^n/n!^2.

Original entry on oeis.org

1, 2, 21, 504, 21380, 1405800, 132139140, 16801276800, 2775758497344, 577868994460800, 147973478687496000, 45703277816543424000, 16753246307626306832640, 7190163806348621417679360, 3571395525388698501285792000
Offset: 1

Views

Author

Paul D. Hanna, May 24 2013

Keywords

Comments

Name is directly from a formula for A129505 given by Vladimir Kruchinin.

Examples

			E.g.f.: A(x) = x + 2*x^2/2!^2 + 21*x^3/3!^2 + 504*x^4/4!^2 + 21380*x^5/5!^2 +...
where
A(x)^2 = 2*x^2/2! + 6*x^3/3! + 34*x^4/4! + 280*x^5/5! + 3013*x^6/6! + 39963*x^7/7! + 629541*x^8/8! +...
and
-log(1-A(x)) = 2*x/2! + 6*x^2/3! + 34*x^3/4! + 280*x^4/5! + 3013*x^5/6! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(prod(k=0, 2*n-2, 1+k*x), n-1)*n!^2*(n-1)!/(2*n-1)!}
    
  • Python
    from math import factorial, comb
    from sympy.functions.combinatorial.numbers import stirling
    def A226057(n): return factorial(n)*stirling(m:=(n<<1)-1,n,kind=1)//comb(m,n-1) # Chai Wah Wu, Jun 08 2025

Formula

a(n) = n!^2*(n-1)!/(2*n-1)! * {[x^(n-1)] Product_{k=0..2*n-2} (1+k*x)}.
a(n) = n!^2*(n-1)!/(2*n-1)! * A129505(n), where A129505(n) = number of permutations of 2n-1 objects with exactly n cycles.
a(n) = n*A204248(n-1), where A204248(n) = permanent of the n-th principal submatrix of A002024.
Showing 1-4 of 4 results.