cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A357420 a(n) is the hafnian of the 2n X 2n symmetric matrix defined by M[i,j] = abs(i - j) if min(i, j) < max(i, j) <= 2*min(i, j), and otherwise 0.

Original entry on oeis.org

1, 1, 1, 8, 86, 878, 13730, 348760, 11622396, 509566864, 26894616012, 1701189027944, 125492778658096, 10738546182981256, 1049631636279244832, 117756049412699967072
Offset: 0

Views

Author

Stefano Spezia, Sep 27 2022

Keywords

Examples

			a(4) = 86:
    0,  1,  0,  0,  0,  0,  0,  0;
    1,  0,  1,  2,  0,  0,  0,  0;
    0,  1,  0,  1,  2,  3,  0,  0;
    0,  2,  1,  0,  1,  2,  3,  4;
    0,  0,  2,  1,  0,  1,  2,  3;
    0,  0,  3,  2,  1,  0,  1,  2;
    0,  0,  0,  3,  2,  1,  0,  1;
    0,  0,  0,  4,  3,  2,  1,  0.
		

Crossrefs

Cf. A000982 (number of zero matrix elements of M(n)), A003983, A007590 (number of positive matrix elements of M(n)), A049581, A051125, A352967, A353452 (determinant of M(n)), A353453 (permanent of M(n)).

Programs

  • Mathematica
    M[i_, j_, n_] := If[Min[i, j] < Max[i, j] <= 2 Min[i, j], Abs[j - i], 0]; a[n_] := Sum[Product[M[Part[PermutationList[s, 2 n], 2 i - 1], Part[PermutationList[s, 2 n], 2 i], 2 n], {i, n}], {s, SymmetricGroup[2 n] // GroupElements}]/(n!*2^n); Array[a, 6, 0]

Extensions

a(6)-a(15) from Pontus von Brömssen, Oct 16 2023

A357421 a(n) is the hafnian of the 2n X 2n symmetric matrix whose generic element M[i,j] is equal to the digital root of i*j.

Original entry on oeis.org

1, 2, 54, 1377, 55350, 4164534, 217595322, 11974135554, 999599777190, 150051627647010, 11873389098337236
Offset: 0

Views

Author

Stefano Spezia, Sep 27 2022

Keywords

Examples

			a(3) = 1377:
    1, 2, 3, 4, 5, 6;
    2, 4, 6, 8, 1, 3;
    3, 6, 9, 3, 6, 9;
    4, 8, 3, 7, 2, 6;
    5, 1, 6, 2, 7, 3;
    6, 3, 9, 6, 3, 9.
		

Crossrefs

Cf. A003991, A010888, A353109, A353933 (permanent of M(n)), A353974 (trace of M(n)).

Programs

  • Mathematica
    M[i_, j_, n_] := If[i*j == 0, 0, 1 + Mod[i*j - 1, 9]]; a[n_] := Sum[Product[M[Part[PermutationList[s, 2 n], 2 i - 1], Part[PermutationList[s, 2 n], 2 i], 2 n], {i, n}], {s, SymmetricGroup[2 n] // GroupElements}]/(n!*2^n); Array[a, 6, 0]

Extensions

a(6)-a(10) from Pontus von Brömssen, Oct 15 2023
Showing 1-2 of 2 results.