cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A276661 Least k such that there is a set S in {1, 2, ..., k} with n elements and the property that each of its subsets has a distinct sum.

Original entry on oeis.org

0, 1, 2, 4, 7, 13, 24, 44, 84, 161
Offset: 0

Views

Author

Charles R Greathouse IV and J. P. Grossman, Sep 11 2016

Keywords

Comments

This sequence is the main entry for the distinct subset sums problem. See also A201052, A005318, A005255.
The Conway-Guy sequence A005318 is an upper bound. Lunnon showed that a(67) < 34808838084768972989 = A005318(67), and Bohman improved the bound to a(67) <= 34808712605260918463.
Lunnon found a(0)-a(8) and J. P. Grossman found a(9).
a(10) > 220, with A201052. - Fausto A. C. Cariboni, Apr 06 2021

Examples

			a(0) = 0: {}
a(1) = 1: {1}
a(2) = 2: {1, 2}
a(3) = 4: {1, 2, 4}
a(4) = 7: {3, 5, 6, 7}
a(5) = 13: {3, 6, 11, 12, 13}
a(6) = 24: {11, 17, 20, 22, 23, 24}
a(7) = 44: {20, 31, 37, 40, 42, 43, 44}
a(8) = 84: {40, 60, 71, 77, 80, 82, 83, 84}
a(9) = 161: {77, 117, 137, 148, 154, 157, 159, 160, 161}
		

References

  • Iskander Aliev, Siegel’s lemma and sum-distinct sets, Discrete Comput. Geom. 39 (2008), 59-66.
  • J. H. Conway and R. K. Guy, Solution of a problem of Erdos, Colloq. Math. 20 (1969), p. 307.
  • Dubroff, Q., Fox, J., & Xu, M. W. (2021). A note on the Erdos distinct subset sums problem. SIAM Journal on Discrete Mathematics, 35(1), 322-324.
  • R. K. Guy, Unsolved Problems in Number Theory, Section C8.
  • Marcin Mucha, Jesper Nederlof, Jakub Pawlewicz, Karol Węgrzycki, Equal-Subset-Sum Faster Than the Meet-in-the-Middle, arXiv:1905.02424
  • Stefan Steinerberger, Some remarks on the Erdős Distinct subset sums problem, International Journal of Number Theory, 2023 , #19:08, 1783-1800 (arXiv:2208.12182).

Crossrefs

A037254 Triangle read by rows: T(n,k) (n >= 1, 1 <= k< = n) gives number of non-distorting tie-avoiding integer vote weights.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 3, 5, 6, 7, 6, 9, 11, 12, 13, 11, 17, 20, 22, 23, 24, 22, 33, 39, 42, 44, 45, 46, 42, 64, 75, 81, 84, 86, 87, 88, 84, 126, 148, 159, 165, 168, 170, 171, 172, 165, 249, 291, 313, 324, 330, 333, 335, 336, 337, 330, 495, 579, 621, 643, 654, 660, 663, 665
Offset: 1

Views

Author

Keywords

Comments

T(n,1) = T(n,floor(n/2)+1) = A002083(n+2). - Reinhard Zumkeller, Nov 18 2012

Examples

			Triangle:
  1;
  1,  2;
  2,  3,  4;
  3,  5,  6,  7;
  6,  9, 11, 12, 13;
  ...
		

References

  • Author?, Solution to Board of Directors Problem, J. Rec. Math., 9 (No. 3, 1977), 240.
  • T. V. Narayana, Lattice Path Combinatorics with Statistical Applications. Univ. Toronto Press, 1979, pp. 100-101.

Crossrefs

Row sums give A005254. A002083 is a column. See also A005318, A096858.

Programs

  • Haskell
    a037254 n k = a037254_tabl !! (n-1) !! (k-1)
    a037254_row n = a037254_tabl !! (n-1)
    a037254_tabl = map fst $ iterate f ([1], drop 2 a002083_list) where
       f (row, (x:xs)) = (map (+ x) (0 : row), xs)
    -- Reinhard Zumkeller, Nov 18 2012
    
  • Mathematica
    a[1, 1] = 1; a[n_, 1] := a[n, 1] = a[n - 1, Floor[(n + 1)/2]]; a[n_, k_ /; k > 1] := a[n, k] = a[n, 1] + a[n - 1, k - 1]; A037254 = Flatten[ Table[ a[n, k], {n, 1, 11}, {k, 1, n}]] (* Jean-François Alcover, Apr 03 2012, after given recurrence *)
  • Python
    def T(n, k):
        if k==1:
            if n==1: return 1
            else: return T(n - 1, (n + 1)//2)
        return T(n, 1) + T(n - 1, k - 1)
    for n in range(1, 12): print([T(n, k) for k in range(1, n + 1)]) # Indranil Ghosh, Jun 03 2017

Formula

T(1,1) = 1;
T(n,1) = T(n-1, floor((n+1)/2));
T(n,k) = T(n,1) + T(n-1,k-1) for k > 1.

Extensions

More terms from (and formula corrected by) James Sellers, Feb 04 2000

A062178 a(n+1) = 2a(n)-a([n/2]) starting with a(0)=0 and a(1)=1.

Original entry on oeis.org

0, 1, 2, 3, 5, 8, 14, 25, 47, 89, 173, 338, 668, 1322, 2630, 5235, 10445, 20843, 41639, 83189, 166289, 332405, 664637, 1328936, 2657534, 5314400, 10628132, 21254942, 42508562, 85014494, 170026358, 340047481, 680089727, 1360169009, 2720327573
Offset: 0

Views

Author

Henry Bottomley, Jun 12 2001

Keywords

Comments

As partial sum of Narayana-Zidek-Capell numbers A002083, this is the number of words beginning with 1, with sum of integers <=n, in the sequence 1, 11, 111, 112, 1111, 1112, 1113, 1121, 1122, 1123, 1124, 11111, 11112, 11113, 11114, 11121, 11122, 11123, 11124, 11125, 11131, 11132, 11133, 11134, 11135, 11136, where any positive integer, in any word, is <= the sum of the preceding integers.
The subsequence of primes in this partial sum begins: 2, 3, 5, 47, 89, 173, 166289. [From Jonathan Vos Post, Feb 17 2010]
For n > 0: a(n) = A005255(n-1) + 1. - Reinhard Zumkeller, Nov 18 2012

Examples

			a(7)=2a(6)-a(3)=2*14-3=25. a(8)=2a(7)-a(3)=2*25-3=47. a(9)=2a(8)-a(4)=2*47-5=89.
		

Programs

  • Haskell
    a062178 n = a062178_list !! (n-1)
    a062178_list = scanl (+) 0 a002083_list
    -- Reinhard Zumkeller, Nov 18 2012

Formula

a(n) =a(n-1)+A002083(n).

A242729 Decimal expansion of the Atkinson-Negro-Santoro constant, a constant associated with Erdős' sum-distinct set constant.

Original entry on oeis.org

3, 1, 6, 6, 8, 4, 1, 7, 3, 6, 5, 2, 7, 0, 5, 8, 2, 0, 2, 1, 8, 3, 5, 6, 5, 7, 2, 3, 0, 8, 2, 8, 8, 3, 2, 9, 6, 4, 6, 6, 7, 9, 9, 5, 4, 3, 9, 1, 7, 0, 8, 3, 4, 4, 6, 0, 2, 2, 0, 0, 5, 6, 8, 8, 2, 0, 2, 0, 0, 1, 4, 0, 2, 1, 2, 6, 1, 4, 6, 8, 2, 5, 6, 5, 6, 5, 0, 1, 7, 8, 9, 8, 2, 5, 5, 0, 4, 0, 0, 4
Offset: 0

Views

Author

Jean-François Alcover, May 21 2014

Keywords

Examples

			0.3166841736527058202183565723...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.28, p. 189.

Crossrefs

Programs

  • Mathematica
    digits = 100; Clear[u, s]; u[n_] := u[n] = 2 u[n-1] - u[n-1 - Floor[(n-1)/2 + 1]]; u[0] = 0; u[1] = 1; s[k_] := s[k] = u[k]/2^k // N[#, digits + 5] &; s[dk = 100]; s[k = 2*dk]; While[RealDigits[s[k], 10, digits] != RealDigits[s[k - dk], 10, digits], Print["k = ", k]; k = k + dk]; RealDigits[s[k], 10, digits] // First

A180459 Sampling n numbers between 1 and a(n)-1, you are guaranteed to always find two subsets whose sums are equal.

Original entry on oeis.org

3, 5, 8, 13, 21, 36, 61, 107, 191, 347, 636, 1177, 2192, 4104, 7718, 14572, 27603, 52439, 99875, 190661, 364733, 699063, 1342190, 2581123, 4971040, 9586994, 18512804, 35791409, 69273681, 134217744, 260301065, 505290287, 981706828
Offset: 3

Views

Author

Marc Leotard (m.leotard(AT)ephec.be), Sep 06 2010

Keywords

Comments

Related to sequence A005255. We look for the largest number m(n) such that, in ANY sample of n numbers from 1 to m, there are always two subsets whose sums are equal.
A005255 gives an upper bound for the lowest number M for which the condition does not hold.
While searching for the solution, I used a "pigeonhole"-type argument to derive a lower bound for M. In a n-elements sample in {1,...,m}, there are S = 2^n - 2 nontrivial subsets (i.e. excluding the empty and the full); the maximum possible "subsum" is P = (m) + (m-1) + ... + (m-n+1) = nm - n(n-1)/2. By the pigeonhole principle, if S > P, there must be at least two subsums that are equal.
This condition S>P is rewritten m > [2^n - 2 + n(n-1)/2]/n , yielding the above sequence.
I do not know what are the exact m(n), between the upper and lower limits.
I would not have mentioned it, were it not for its similarity with Fibonacci in the first terms.

Examples

			Example for n=6 : in a 6-elements sample, there are S = 2^6 - 2 = 62 nontrivial subsets; the maximum possible "subsum" is P = (m) + (m-1) + ... + (m-5) = 6m - 6*5/2 = 6m - 15. With m = a(6) = 13, P = 63 : this is the lowest value of m for which the argument S>P is not working.
		

Programs

  • Mathematica
    f[n_] := Ceiling[(2^n + n (n - 1)/2 - 2)/n]; Array[f, 30, 3] (* Robert G. Wilson v, Sep 07 2010 *)

Formula

For n>=3, a(n)= [ 2^n - 2 + n(n-1)/2 ] / n rounded up.

Extensions

More terms from Robert G. Wilson v, Sep 07 2010

A242730 Decimal expansion of the Conway-Guy constant, a constant associated with Erdős' sum-distinct set constant.

Original entry on oeis.org

2, 3, 5, 1, 2, 5, 2, 8, 4, 8, 1, 1, 1, 7, 4, 8, 6, 5, 6, 3, 5, 5, 8, 8, 1, 7, 4, 3, 9, 1, 8, 7, 9, 0, 0, 9, 8, 8, 0, 9, 8, 4, 5, 1, 9, 5, 8, 3, 5, 2, 9, 5, 9, 8, 5, 8, 2, 6, 7, 7, 9, 6, 6, 3, 1, 6, 7, 0, 3, 1, 9, 0, 5, 1, 3, 7, 1, 3, 2, 4, 8, 7, 4, 7, 1, 4, 0, 9, 0, 0, 0, 0, 1, 5, 0, 0, 3, 1, 1, 7
Offset: 0

Views

Author

Jean-François Alcover, May 21 2014

Keywords

Examples

			0.23512528481117486563558817439187900988...
		

References

  • J. H. Conway and R. K. Guy, “Sets of Natural Numbers with Distinct Sums,” Notices Amer. Math. Soc., vol. 15, 1968.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.28, p. 189.

Crossrefs

Programs

  • Mathematica
    digits = 100; Clear[v, s]; v[n_] := v[n] = 2*v[n-1] - v[n-1 - Floor[1/2 + Sqrt[2*(n-1)]]]; v[0] = 0; v[1] = 1; s[k_] := s[k] = v[k]/2^k // N[#, digits + 5] &; s[dk = 250]; s[k = 2*dk]; While[RealDigits[s[k], 10, digits] != RealDigits[s[k - dk], 10, digits],  Print["k = ", k]; k = k + dk]; RealDigits[s[k], 10, digits] // First
Showing 1-6 of 6 results.