cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Daniel Cieslinski

Daniel Cieslinski's wiki page.

Daniel Cieslinski has authored 1 sequences.

A335927 a(n+1) = Sum_{k=1..n} (a(k) + k*(n-k)), with a(1)=1.

Original entry on oeis.org

1, 2, 7, 20, 50, 115, 251, 530, 1096, 2237, 4529, 9124, 18326, 36743, 73591, 147302, 294740, 589633, 1179437, 2359064, 4718338, 9436907, 18874067, 37748410, 75497120, 150994565, 301989481, 603979340, 1207959086
Offset: 1

Author

Daniel Cieslinski, Jul 01 2020

Keywords

Comments

First column of matrix given by:
C(1,1) = 1,
C(n,k+1) = C(n,k) + n,
C(n+1,1) = Sum_{k=1..n-1} C(k, n-k+1);
where C(i,j) denotes cell at row i and column j
1 2 3 4 5 6 ..
2 4 6 8 10 ...
7 10 13 16 ...
20 24 28 ...
50 55 ...
115...
-------
Can also be seen as diagonal of the following triangle, which is obtained by shifting n-th row of the earlier mentioned matrix, by n-1 cells:
1 2 3 4 5 6 ...
2 4 6 8 10 ...
7 10 13 16 ...
20 24 28 ...
50 55 ...
115...

Crossrefs

Cf. A253145.

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = Sum[a[k] + k*(n - k), {k, 1, n - 1}]; Array[a, 30] (* Amiram Eldar, Jul 02 2020 *)
    LinearRecurrence[{5,-9,7,-2},{1,2,7,20,50},30] (* Harvey P. Dale, Sep 27 2024 *)
  • Python
    def a(n):
        if n == 1: return 1
        return sum([a(k) + k*(n-k) for k in range(1,n)])

Formula

a(1) = 1, a(n+1) = Sum_{k=1..n} (a(k) + k*(n-k)); for n>1.
a(n) = 1/4 * (9*2^n - 2*n^2 - 6*n - 8); for n > 1.
a(n+1) = 2 * a(n) + A253145(n-1).
From Stefano Spezia, Jul 02 2020: (Start)
G.f.: x*(1 - 3*x + 6*x^2 - 4*x^3 + x^4)/((1 - x)^3*(1 - 2*x)).
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4) for n > 5. (End)