cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005323 Column of Motzkin triangle.

Original entry on oeis.org

1, 4, 14, 44, 133, 392, 1140, 3288, 9438, 27016, 77220, 220584, 630084, 1800384, 5147328, 14727168, 42171849, 120870324, 346757334, 995742748, 2862099185, 8234447672, 23713180780, 68350541480, 197188167735, 569371325796
Offset: 3

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A026300.
A diagonal of triangle A020474.

Programs

  • Maple
    A005323 := proc(n)
        if n <= 5 then
            op(n-2,[1,4,14]) ;
        else
            n*(2*n+1)*procname(n-1)+3*n*(n-1)*procname(n-2) ;
            %/(n+5)/(n-3) ;
        end if;
    end proc:
    seq(A005323(n),n=3..20) ; # R. J. Mathar, Aug 17 2022
  • Mathematica
    a[3] = 1; a[4] = 4;
    a[n_] := a[n] = (n(3(n-1) a[n-2] + (2n+1) a[n-1])) / ((n-3)(n+5));
    Table[a[n], {n, 3, 30}] (* Jean-François Alcover, Jul 27 2018 *)
  • Maxima
    a(n):=(4*sum(binomial(j,2*j-n+3)*binomial(n+1,j),j,ceiling((n-3)/2),n+1))/(n+1); /* Vladimir Kruchinin, Mar 18 2014 */

Formula

a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| <= 1 for i = 1, 2, ..., n, s(0) = 0, s(n) = 3.
G.f.: z^3*M^4, where M is g.f. of Motzkin numbers (A001006).
a(n) = 4*(-3)^(1/2)*(-1)^n*n*((-3*n^3-9*n^2-6*n-9)*hypergeom([1/2, n],[1],4/3)+(2*n^3+n^2-17*n-13)*hypergeom([1/2, n+1],[1],4/3))/(3*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)) (for n >= 3). - Mark van Hoeij, Nov 12 2009
(n + 5) (n - 3) a(n) = n (2 n + 1) a(n - 1) + 3 n (n - 1) a(n - 2). - Simon Plouffe, Feb 09 2012, corrected for offset Aug 17 2022
a(n) = 4*sum(j=ceiling((n-3)/2)..n+1, C(j,2*j-n+3)*C(n+1,j))/(n+1). - Vladimir Kruchinin, Mar 17 2014
a(n) ~ 2 * 3^(n + 3/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 17 2019

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003