cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005324 Column of Motzkin triangle A026300.

Original entry on oeis.org

1, 5, 20, 70, 230, 726, 2235, 6765, 20240, 60060, 177177, 520455, 1524120, 4453320, 12991230, 37854954, 110218905, 320751445, 933149470, 2714401580, 7895719634, 22969224850, 66829893650, 194486929650, 566141346225, 1648500576021
Offset: 4

Views

Author

Keywords

Comments

a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 0, s(n) = 4. - Clark Kimberling
a(n) = T(n,n-4), where T is the array in A026300.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A026300.
A diagonal of triangle A020474.

Programs

  • Maple
    A005324 := proc(n)
        if n <= 6 then
            op(n-3,[1,5,20]) ;
        else
            n*(2*n+1)*procname(n-1)+3*n*(n-1)*procname(n-2) ;
            %/(n+6)/(n-4) ;
        end if;
    end proc:
    seq(A005324(n),n=4..20) ; # R. J. Mathar, Aug 17 2022
  • Mathematica
    T[n_, k_] := Sum[m = 2j+n-k; Binomial[n, m] (Binomial[m, j] - Binomial[m, j-1]), {j, 0, k/2}];
    a[n_] := T[n, n-4];
    Table[a[n], {n, 4, 30}] (* Jean-François Alcover, Jul 27 2018 *)
  • Maxima
    a(n) := 5*sum(binomial(j,2*j-n+4)*binomial(n+1,j),j,ceiling((n-4)/2),(n+1))/(n+1); /* Vladimir Kruchinin, Mar 18 2014 */

Formula

G.f.: z^4*M^5, where M is g.f. of Motzkin numbers (A001006).
a(n) = (-5*I*(-1)^n*(n^4-6*n^3-43*n^2-24*n+36)*3^(1/2)*hypergeom([1/2, n+2],[1],4/3)+15*I*(-1)^n*(n^4+6*n^3+17*n^2+24*n-12)*3^(1/2)*hypergeom([1/2, n+1],[1],4/3))/(6*(n+3)*(n+2)*(n+4)*(n+5)*(n+6)). - Mark van Hoeij, Oct 29 2011
a(n) (n + 6) (n - 4) = n (2 n + 1) a(n - 1) + 3 n (n - 1) a(n - 2). - Simon Plouffe, Feb 09 2012, corrected for offset Aug 17 2022
a(n) = 5*sum(j=ceiling((n-4)/2)..(n+1), binomial(j,2*j-n+4)*binomial(n+1,j))/(n+1). - Vladimir Kruchinin, Mar 17 2014
a(n) = A026300(n,n-4). - R. J. Mathar, Aug 17 2022