A005351 Base -2 representation for n regarded as base 2, then evaluated.
0, 1, 6, 7, 4, 5, 26, 27, 24, 25, 30, 31, 28, 29, 18, 19, 16, 17, 22, 23, 20, 21, 106, 107, 104, 105, 110, 111, 108, 109, 98, 99, 96, 97, 102, 103, 100, 101, 122, 123, 120, 121, 126, 127, 124, 125, 114, 115, 112, 113, 118, 119, 116, 117, 74, 75, 72, 73, 78, 79, 76
Offset: 0
Examples
2 = 4+(-2)+0 = 110 => 6, 3 = 4+(-2)+1 = 111 => 7, ..., 6 = (16)+(-8)+0+(-2)+0 = 11010 => 26.
References
- M. Gardner, Knotted Doughnuts and Other Mathematical Entertainments. Freeman, NY, 1986, p. 101.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..8191
- Joerg Arndt, Matters Computational (The Fxtbook), p. 58-59
- Eric Weisstein's World of Mathematics, Negabinary
- Wikipedia, Negative base
- A. Wilks, Email, May 22 1991
Crossrefs
Programs
-
Haskell
a005351 0 = 0 a005351 n = a005351 n' * 2 + m where (n', m) = if r < 0 then (q + 1, r + 2) else (q, r) where (q, r) = quotRem n (negate 2) -- Reinhard Zumkeller, Jul 07 2012
-
Mathematica
a[n_] := Module[{t = 2(4^Floor[ Log[4, Abs[n] + 1] + 2] - 1)/3}, BitXor[n + t, t]]; Table[a[n], {n, 0, 60}] (* Robert G. Wilson v, Jan 24 2005 *)
-
PARI
a(n) = my(t=(32*4^logint(abs(n)+1,4)-2)/3); bitxor(n+t,t); \\ Ruud H.G. van Tol, Oct 18 2023
-
Python
def A005351(n): s, q = '', n while q >= 2 or q < 0: q, r = divmod(q, -2) if r < 0: q += 1 r += 2 s += str(r) return int(str(q)+s[::-1],2) # Chai Wah Wu, Apr 10 2016
Formula
a(4n+2) = 4a(n+1)+2, a(4n+3) = 4a(n+1)+3, a(4n+4) = 4a(n+1), a(4n+5) = 4a(n+1)+1, n>-2, a(1)=1. - Ralf Stephan, Apr 06 2004
Extensions
More terms from Robert G. Wilson v, Jan 24 2005
Comments