cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005351 Base -2 representation for n regarded as base 2, then evaluated.

Original entry on oeis.org

0, 1, 6, 7, 4, 5, 26, 27, 24, 25, 30, 31, 28, 29, 18, 19, 16, 17, 22, 23, 20, 21, 106, 107, 104, 105, 110, 111, 108, 109, 98, 99, 96, 97, 102, 103, 100, 101, 122, 123, 120, 121, 126, 127, 124, 125, 114, 115, 112, 113, 118, 119, 116, 117, 74, 75, 72, 73, 78, 79, 76
Offset: 0

Views

Author

Keywords

Comments

a(n) = n when n is a power of 4. This is because the even-indexed powers of 2 are the same as the even-indexed powers of -2. - Alonso del Arte, Feb 09 2012
a(n) = n if n is a sum of distinct powers of 4. - Michael Somos, Aug 27 2012
Write n = Sum_{i in b(n)} (-2)^(i - 1), which uniquely determines the set of positive integers b(n). Then a(n) = Sum_{i in b(n)} 2^(i - 1). For example, a(7) = 27 because 7 = (-2)^0 + (-2)^1 + (-2)^3 + (-2)^4 and 27 = 2^0 + 2^1 + 2^3 + 2^4. - Gus Wiseman, Jul 26 2019

Examples

			2 = 4+(-2)+0 = 110 => 6, 3 = 4+(-2)+1 = 111 => 7, ..., 6 = (16)+(-8)+0+(-2)+0 = 11010 => 26.
		

References

  • M. Gardner, Knotted Doughnuts and Other Mathematical Entertainments. Freeman, NY, 1986, p. 101.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A039724. Complement of A005352.
Cf. A185269 (primes in this sequence).

Programs

  • Haskell
    a005351 0 = 0
    a005351 n = a005351 n' * 2 + m where
       (n', m) = if r < 0 then (q + 1, r + 2) else (q, r)
                 where (q, r) = quotRem n (negate 2)
    -- Reinhard Zumkeller, Jul 07 2012
    
  • Mathematica
    a[n_] := Module[{t = 2(4^Floor[ Log[4, Abs[n] + 1] + 2] - 1)/3}, BitXor[n + t, t]]; Table[a[n], {n, 0, 60}] (* Robert G. Wilson v, Jan 24 2005 *)
  • PARI
    a(n) = my(t=(32*4^logint(abs(n)+1,4)-2)/3); bitxor(n+t,t); \\ Ruud H.G. van Tol, Oct 18 2023
  • Python
    def A005351(n):
        s, q = '', n
        while q >= 2 or q < 0:
            q, r = divmod(q, -2)
            if r < 0:
                q += 1
                r += 2
            s += str(r)
        return int(str(q)+s[::-1],2) # Chai Wah Wu, Apr 10 2016
    

Formula

a(4n+2) = 4a(n+1)+2, a(4n+3) = 4a(n+1)+3, a(4n+4) = 4a(n+1), a(4n+5) = 4a(n+1)+1, n>-2, a(1)=1. - Ralf Stephan, Apr 06 2004

Extensions

More terms from Robert G. Wilson v, Jan 24 2005