cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005353 Number of 2 X 2 matrices with entries mod n and nonzero determinant.

Original entry on oeis.org

0, 6, 48, 168, 480, 966, 2016, 3360, 5616, 8550, 13200, 17832, 26208, 34566, 45840, 59520, 78336, 95526, 123120, 147240, 181776, 219846, 267168, 307488, 372000, 433446, 505440, 580776, 682080, 762150, 892800, 999936, 1138368, 1284486
Offset: 1

Views

Author

Keywords

References

  • T. Brenner, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Table[cnt=0; Do[m={{a, b}, {c, d}}; If[Det[m, Modulus->p] > 0, cnt++ ], {a, 0, p-1}, {b, 0, p-1}, {c, 0, p-1}, {d, 0, p-1}]; cnt, {p, 37}] (* T. D. Noe, Jan 12 2006 *)
    f[p_, e_] := p^(2*e - 1)*(p^(e + 1) + p^e - 1); a[1] = 0; a[n_] := n^4 - Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 31 2023 *)
  • PARI
    a(n) = {my(f = factor(n), p, e); n^4 - prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2];  p^(2*e - 1)*(p^(e + 1) + p^e - 1));} \\ Amiram Eldar, Oct 31 2023

Formula

a(n) = n^4 - A020478(n).
For prime n, a(n) = (n^2-1)(n-1)n. - T. D. Noe, Jan 12 2006

Extensions

More terms from T. D. Noe, Jan 12 2006