A039623
a(n) = n^2*(n^2+3)/4.
Original entry on oeis.org
1, 7, 27, 76, 175, 351, 637, 1072, 1701, 2575, 3751, 5292, 7267, 9751, 12825, 16576, 21097, 26487, 32851, 40300, 48951, 58927, 70357, 83376, 98125, 114751, 133407, 154252, 177451, 203175, 231601, 262912, 297297, 334951, 376075, 420876, 469567
Offset: 1
Christian Meland (christian.meland(AT)pfi.no)
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Jean-Paul Delahaye, Le miraculeux "lemme de Burnside", pp. 145-6 in 'Pour la Science' (French edition of 'Scientific American'), No. 350, December 2006, Paris.
- Milan Janjic, Two Enumerative Functions.
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
[n^2*(n^2+3)/4 : n in [1..50]]; // Wesley Ivan Hurt, Dec 26 2016
-
A039623:=n->n^2*(n^2+3)/4: seq(A039623(n), n=1..50); # Wesley Ivan Hurt, Dec 26 2016
-
Table[(n^2 (n^2+3))/4,{n,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,7,27,76,175},40] (* Harvey P. Dale, Oct 01 2011 *)
-
Vec((-1-2*x-2*x^2-x^3)/(x-1)^5 + O(x^50)) \\ Michel Marcus, Aug 23 2015
-
a(n) = (1/4)*n^2*(n^2+3); \\ Altug Alkan, Apr 16 2016
A020478
Number of singular 2 X 2 matrices over Z(n) (i.e., with determinant = 0).
Original entry on oeis.org
1, 10, 33, 88, 145, 330, 385, 736, 945, 1450, 1441, 2904, 2353, 3850, 4785, 6016, 5185, 9450, 7201, 12760, 12705, 14410, 12673, 24288, 18625, 23530, 26001, 33880, 25201, 47850, 30721, 48640, 47553, 51850, 55825, 83160, 51985, 72010, 77649, 106720
Offset: 1
-
f[p_, e_] := p^(2*e - 1)*(p^(e + 1) + p^e - 1); a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 22 2020 *)
-
a(n)=if(n<1, 0, direuler(p=2, n, (1-p*X)/((1-p^2*X)*(1-p^3*X)))[n])
-
a(n)=local(c=0); forvec(x=vector(4,k,[1,n]),c+=((x[1]*x[2]-x[3]*x[4])%n==0)); c
A115077
Number of 2 X 2 symmetric matrices over Z(n) having nonzero determinant.
Original entry on oeis.org
0, 4, 18, 44, 100, 180, 294, 432, 630, 900, 1210, 1548, 2028, 2548, 3150, 3744, 4624, 5436, 6498, 7500, 8820, 10164, 11638, 13104, 14900, 16900, 18792, 20972, 23548, 26100, 28830, 31360, 34848, 38148, 41650, 44676, 49284, 53428, 57798, 62000
Offset: 1
Cf.
A005353 (number of 2 X 2 matrices over Z(n) having nonzero determinant),
A115075.
-
Table[cnt=0; Do[m={{a, b}, {b, c}}; If[Det[m, Modulus->n]>0, cnt++ ], {a, 0, n-1}, {b, 0, n-1}, {c, 0, n-1}]; cnt, {n, 50}]
f[p_, e_] := p^e*(p^e + p^(e-1) - p^(Ceiling[e/2] - 1)); a[1] = 0; a[n_] := n^3 - Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 31 2023 *)
-
a(n) = {my(f = factor(n), p, e); n^3 - prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; p^e*(p^e + p^(e-1) - p^((e+1)\2 - 1)));} \\ Amiram Eldar, Oct 31 2023
A181107
Triangle read by rows: T(n,k) is the number of 2 X 2 matrices over Z(n) having determinant congruent to k mod n, 1 <= n, 0 <= k <= n-1.
Original entry on oeis.org
1, 10, 6, 33, 24, 24, 88, 48, 72, 48, 145, 120, 120, 120, 120, 330, 144, 240, 198, 240, 144, 385, 336, 336, 336, 336, 336, 336, 736, 384, 576, 384, 672, 384, 576, 384, 945, 648, 648, 864, 648, 648, 864, 648, 648, 1450, 720, 1200, 720, 1200, 870, 1200, 720, 1200, 720
Offset: 1
From _Andrew Howroyd_, Jul 16 2018: (Start)
Triangle begins:
1;
10, 6;
33, 24, 24;
88, 48, 72, 48;
145, 120, 120, 120, 120;
330, 144, 240, 198, 240, 144;
385, 336, 336, 336, 336, 336, 336;
736, 384, 576, 384, 672, 384, 576, 384;
945, 648, 648, 864, 648, 648, 864, 648, 648;
... (End)
- Erdos Pal, Rows n=1..100 of triangle, flattened
- Richard P. Brent and Brendan D. McKay, Determinants and ranks of random matrices over Z_m, Discrete Mathematics 66 (1987) pp. 35-49.
- A. K. Gupta, Generalized hidden hexagon squares, The Fibonacci Quarterly, Vol 12, Number 1, Feb.1974, pp. 45-46.
- S. Hitotumatu, D. Sato, Star of David theorem (I), The Fibonacci Quarterly, Vol 13, Number 1, Feb.1975, p. 70.
-
(* computing T(p^e,k) ; p=prime, 1<=e, 0<=k
-
S(p,e)={my(u=vector(p^e)); my(t=(p-1)*p^(e-1)); u[1] = p^e + e*t; for(j=1, p^e-1, u[j+1] = t*(1+valuation(j, p))); vector(#u, k, sum(j=0, #u-1, u[j + 1]*u[(j+k-1) % #u + 1]))}
T(n)={my(f=factor(n), v=vector(n,i,1)); for(i=1, #f~, my(r=S(f[i,1], f[i,2])); for(j=0, #v-1, v[j + 1] *= r[j % #r + 1])); v}
for(n=1, 10, print(T(n))); \\ Andrew Howroyd, Jul 16 2018
Showing 1-4 of 4 results.
Comments