A194894 The number of the ordered triples (A,B,C) satisfying the system of the modular relations {A*B - B*A = C, B*C - C*B = A, C*A - A*C = B}, where A,B,C are distinct 2 X 2 matrices over Z(n).
0, 0, 24, 0, 120, 24, 336, 0, 648, 120, 1320, 24, 2184, 336, 3024, 0, 4896, 648, 6840, 120, 8424, 1320, 12144, 24, 15000, 2184, 17496, 336, 24360, 3024, 29760, 0, 33024, 4896, 40776, 648, 50616, 6840, 54624, 120, 68880
Offset: 1
Examples
The matrices A=[0,1;2,0], B=[1,1;1,2], C=[2,1;1,1] of row order form satisfy the system of the (mod 3)-relations {A*B - B*A = C, A#B, B*C - C*B = A, B#C, C*A - A*C = B, C#A}, so we have a trio (+A,+B,+C). All the solutions of the system can be represented by the trios (+A,+B,+C), (+B,+C,+A), (+C,+A,+B), (+A,-C,+B), (-C,+B,+A), (+B,+A,-C), (+A,+C,-B), (+C,-B,+A), (-B,+A,+C), (+A,-B,-C), (-B,-C,+A), (-C,+A,-B), (-A,+B,-C), (+B,-C,-A), (-C,-A,+B), (-A,-C,-B), (-C,-B,-A), (-B,-A,-C), (-A,+C,+B), (+C,+B,-A), (+B,-A,+C), (-A,-B,+C), (-B,+C,-A), (+C,-A,-B), so a(3)=24.
Formula
a(2^e) = 0 for e>=0; a( m*(2^e) ) = a(m) for m>=1,e>=0.
a(p^e) = (p^2-1)*p^(3*e-2) for odd prime p,e>=1.
a(m*n) = a(m) + a(n) + a(m)*a(n) for gcd(m,n)=1
Comments