cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A194894 The number of the ordered triples (A,B,C) satisfying the system of the modular relations {A*B - B*A = C, B*C - C*B = A, C*A - A*C = B}, where A,B,C are distinct 2 X 2 matrices over Z(n).

Original entry on oeis.org

0, 0, 24, 0, 120, 24, 336, 0, 648, 120, 1320, 24, 2184, 336, 3024, 0, 4896, 648, 6840, 120, 8424, 1320, 12144, 24, 15000, 2184, 17496, 336, 24360, 3024, 29760, 0, 33024, 4896, 40776, 648, 50616, 6840, 54624, 120, 68880
Offset: 1

Views

Author

Erdos Pal, Sep 04 2011

Keywords

Comments

If (A,B,C) is a triple and X is chosen from among A,B,C, then trace(X)=0 mod n, X*X = -det(X)*IdentityMatrix mod n, A*B + B*A = B*C + C*B = C*A + A*C = 0 mod n, det(A) = det(B) = det(C) mod n, A*A = B*B = C*C mod n, A = 2*B*C, B = 2*C*A, C = 2*A*B mod n.
For a given value of n, consider the family of triples (A,B,C) for which d = det(A) = det(B) = det(C) mod n. Let b(n,d) denote the number of elements of the set {A: (A,B,C) is a triple and det(A) = d}. Let b(n) = Sum{ b(n,d) for all such d }, for example, d(15) = 6 + 30 + 180. Detailed results of searching for trios (N(d) = number of triples in the family):
. .n b(n,d) ...d ......N
. .1 .....0 .... ......0
. .2 .....0 .... ......0
. .3 .....6 ...1 .....24
. .4 .....0 .... ......0
. .5 ....30 ...4 ....120
. .6 .....6 ...4 .....24
. .7 ....42 ...2 ....336
. .8 .....0 .... ......0
. .9 ....54 ...7 ....648
. 10 ....30 ...4 ....120
. 11 ...110 ...3 ...1320
. 12 .....6 ...4 .....24
. 13 ...182 ..10 ...2184
. 14 ....42 ...2 ....336
. 15......6 ..10 .....24
. 15.....30 ...9 ....120
. 15....180 ...4 ...2880
. 16 .....0 .... ......0
. 17 ...306 ..13 ...4896
. 18 ....54 ..16 ....648
. 19 ...342 ...5 ...6840
. 20 ....30 ...4 ....120
. 21......6 ...7 .....24
. 21....252 ..16 ...8064
. 21.....42 ...9 ....336
. 22 ...110 ..14 ...1320
. 23 ...506 ...6 ..12144
. 24 .....6 ..16 .....24
. 25 ...750 ..19 ..15000
. 26 ...182 .... ...2184
. 27 ...486 ...7 ..17496
. 28 ....42 ..16 ....336
. 29 ...870 ..22 ..24360
. 30......6 ..10 .....24
. 30.....30 ..24 ....120
. 30....180 ...4 ...2880
. 31 ...930 ...8 ..29760
. 32 .....0 .... ......0
. 33......6 ..22 .....24
. 33....660 ..25 ..31680
. 33....110 ...3 ...1320
. 34 ...306 ..30 ...4896
. 35...1260 ...9 ..40320
. 35.....42 ..30 ....336
. 35.....30 ..14 ....120
. 36 ....54 ..16 ....648
. 37 ..1406 ..28 ..50616
. 38 ...342 ..24 ...6840
. 39......6 ..13 .....24
. 39....182 ..36 ...2184
. 39...1092 ..10 ..52416
. 40 ....30 ..24 ....120
. 41 ..1722 ..31 ..68880
Remarks for the cases n<=41 (conjectures for n>41):
b(n) is similar to a(n), i.e., b(2^e)=0 for e>=0, b(m*2^e)=b(m) for m>=0 and e>=0, b(m*n) = b(m) + b(n) + b(m)*b(n) for gcd(m,n)=1;
b(p) = (p-1)*p for primes of the form p = 4*k + 1;
b(p) = p*(p+1) for primes of the form p = 4*k - 1;
b(p^e) = b(p)*(p^(2*(e-1))) for odd primes p and e>=1;
if n=p^e (p is odd prime, e>=1) then d is a constant for all trios (there is only one family), moreover 4*d=1 (mod n).

Examples

			The matrices A=[0,1;2,0], B=[1,1;1,2], C=[2,1;1,1] of row order form satisfy the system of the (mod 3)-relations {A*B - B*A = C, A#B, B*C - C*B = A, B#C, C*A - A*C = B, C#A}, so we have a trio (+A,+B,+C). All the solutions of the system can be represented by the trios
(+A,+B,+C), (+B,+C,+A), (+C,+A,+B),
(+A,-C,+B), (-C,+B,+A), (+B,+A,-C),
(+A,+C,-B), (+C,-B,+A), (-B,+A,+C),
(+A,-B,-C), (-B,-C,+A), (-C,+A,-B),
(-A,+B,-C), (+B,-C,-A), (-C,-A,+B),
(-A,-C,-B), (-C,-B,-A), (-B,-A,-C),
(-A,+C,+B), (+C,+B,-A), (+B,-A,+C),
(-A,-B,+C), (-B,+C,-A), (+C,-A,-B), so a(3)=24.
		

Crossrefs

Formula

a(2^e) = 0 for e>=0; a( m*(2^e) ) = a(m) for m>=1,e>=0.
a(p^e) = (p^2-1)*p^(3*e-2) for odd prime p,e>=1.
a(m*n) = a(m) + a(n) + a(m)*a(n) for gcd(m,n)=1
Showing 1-1 of 1 results.