A005354 Number of asymmetric planar trees with n nodes.
1, 1, 0, 0, 0, 1, 3, 9, 28, 85, 262, 827, 2651, 8626, 28507, 95393, 322938, 1104525, 3812367, 13266366, 46504495, 164098390, 582521687, 2079133141, 7457788295, 26872946466, 97238824018, 353218128299, 1287657977946, 4709784136316
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 201 terms from Vincenzo Librandi)
- Gilbert Labelle, Counting asymmetric enriched trees, J. Symbolic Comput. 14 (1992), no. 2-3, 211-242.
- Torsten Mütze and Franziska Weber, Construction of 2-factors in the middle layer of the discrete cube, arXiv preprint arXiv:1111.2413 [math.CO], 2011.
- T. Mütze and F. Weber, Construction of 2-factors in the middle layer of the discrete cube, Journal of Combinatorial Theory, Series A, 119(8) (2012), 1832-1855.
- Index entries for sequences related to trees
Programs
-
Maple
From R. J. Mathar, Feb 03 2010: (Start) A000108 := proc(n) binomial(2*n,n)/(n+1) ; end proc: A007727 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do a := a+binomial(2*d,d)*numtheory[mobius](n/d) ; end do ; a ; end proc; A022553 := proc(n) A007727(n)/2/n ; end proc: A005354 := proc(n) local a; if n <=1 then 1; else a := A022553(n-1) ; a := a-A000108(n-1)/2 ; if type(n,'even') then a := a-A000108(n/2-1)/2 ; end if; a ; end if; end proc: seq(A005354(n),n=0..20) ; (End)
-
Mathematica
a[0] = a[1] = 1; a[n_] := DivisorSum[n-1, MoebiusMu[(n-1)/#]*Binomial[2#, #]&]/(2(n-1)) - CatalanNumber[n-1]/2 - Boole[EvenQ[n]]*CatalanNumber[n/2 - 1]/2; Table[a[n], {n, 0, 29}] (* Jean-François Alcover, May 09 2012, after R. J. Mathar, updated Jan 31 2018 *)
Formula
Extensions
More terms from Christian G. Bower, Dec 15 1999
Comments