cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005354 Number of asymmetric planar trees with n nodes.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 3, 9, 28, 85, 262, 827, 2651, 8626, 28507, 95393, 322938, 1104525, 3812367, 13266366, 46504495, 164098390, 582521687, 2079133141, 7457788295, 26872946466, 97238824018, 353218128299, 1287657977946, 4709784136316
Offset: 0

Views

Author

Keywords

Comments

a(13) in the Labelle table is a typographical error. - R. J. Mathar, Feb 03 2010

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    From R. J. Mathar, Feb 03 2010: (Start)
    A000108 := proc(n) binomial(2*n,n)/(n+1) ; end proc:
    A007727 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do a := a+binomial(2*d,d)*numtheory[mobius](n/d) ; end do ; a ; end proc;
    A022553 := proc(n) A007727(n)/2/n ; end proc:
    A005354 := proc(n) local a; if n <=1 then 1; else a := A022553(n-1) ; a := a-A000108(n-1)/2 ; if type(n,'even') then a := a-A000108(n/2-1)/2 ; end if; a ; end if; end proc: seq(A005354(n),n=0..20) ; (End)
  • Mathematica
    a[0] = a[1] = 1; a[n_] := DivisorSum[n-1, MoebiusMu[(n-1)/#]*Binomial[2#, #]&]/(2(n-1)) - CatalanNumber[n-1]/2 - Boole[EvenQ[n]]*CatalanNumber[n/2 - 1]/2; Table[a[n], {n, 0, 29}] (* Jean-François Alcover, May 09 2012, after R. J. Mathar, updated Jan 31 2018 *)

Formula

From Christian G. Bower, Dec 15 1999: (Start)
G.f.: 1+B(x)+(C(x^2)-C(x)^2)/2 where B is g.f. of A022553(n-1) and C is g.f. of A000108(n-1).
a(n) = A022553(n-1) - A000108(n-2)/2 - (if n is even) A000108(n/2-1)/2. (End)

Extensions

More terms from Christian G. Bower, Dec 15 1999