cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Susanna Cuyler

Susanna Cuyler's wiki page.

Susanna Cuyler has authored 8 sequences.

A265046 Coordination sequence for a 4.6.6 point in the 3-transitive tiling {4.6.6, 6.6.6, 6.6.6.6} of the plane by squares and dominoes (hexagons).

Original entry on oeis.org

1, 3, 5, 8, 13, 18, 23, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232
Offset: 0

Author

N. J. A. Sloane and Susanna Cuyler, Dec 27 2015

Keywords

Comments

This tiling is 3-transitive but not 3-uniform since the polygons are not regular. It is a common floor-tiling.
The coordination sequences with respect to the points of types 4.6.6 (labeled "C" in the illustration), 6.6.6 ("B"), 6.6.6.6 ("A") are A265046, A265045, and A008574, respectively. The present sequence is for a "C" point.

Crossrefs

Programs

  • PARI
    Vec((1+x)*(1+x^3+x^4-x^5+x^6-x^7)/(1-x)^2+ O(x^100)) \\ Colin Barker, Jan 01 2016

Formula

For n >= 7 all three sequences equal 4n. (For n >= 7 the n-th shell contains n-1 points in the interior of each quadrant plus 4 points on the axes.)
From Colin Barker, Jan 01 2016: (Start)
a(n) = 2*a(n-1)-a(n-2) for n>8.
a(n) = 4*n for n>6.
G.f.: (1+x)*(1+x^3+x^4-x^5+x^6-x^7) / (1-x)^2.
(End)

A265045 Coordination sequence for a 6.6.6 point in the 3-transitive tiling {4.6.6, 6.6.6, 6.6.6.6} of the plane by squares and dominoes (hexagons).

Original entry on oeis.org

1, 3, 7, 11, 14, 18, 23, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232
Offset: 0

Author

N. J. A. Sloane and Susanna Cuyler, Dec 27 2015

Keywords

Comments

This tiling is 3-transitive but not 3-uniform since the polygons are not regular. It is a common floor-tiling.
The coordination sequences with respect to the points of types 4.6.6 (labeled "C" in the illustration), 6.6.6 ("B"), 6.6.6.6 ("A") are A265046, A265045, and A008574, respectively. The present sequence is for a "B" point.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,-1},{1,3,7,11,14,18,23,28,32},60] (* Harvey P. Dale, Sep 23 2017 *)
  • PARI
    Vec((1+x)*(1+2*x^2-2*x^3+x^4+x^6-x^7)/(1-x)^2 + O(x^100)) \\ Colin Barker, Jan 01 2016

Formula

For n >= 7 all three sequences equal 4n. (For n >= 7 the n-th shell contains n-1 points in the interior of each quadrant plus 4 points on the axes.)
From Colin Barker, Jan 01 2016: (Start)
a(n) = 2*a(n-1)-a(n-2) for n>8.
a(n) = 4*n for n>6.
G.f.: (1+x)*(1+2*x^2-2*x^3+x^4+x^6-x^7) / (1-x)^2.
(End)

A181753 Universal sequence of period 56 which contains every 3-subset of {1,2,...,8} exactly once.

Original entry on oeis.org

1, 3, 5, 6, 7, 2, 5, 6, 8, 2, 3, 4, 7, 2, 3, 5, 7, 8, 1, 4, 7, 8, 2, 4, 5, 6, 1, 4, 5, 7, 1, 2, 3, 6, 1, 2, 4, 6, 7, 8, 3, 6, 7, 1, 3, 4, 5, 8, 3, 4, 6, 8, 1, 2, 5, 8, 1, 3, 5, 6, 7, 2, 5, 6, 8, 2, 3, 4, 7, 2, 3, 5, 7, 8, 1, 4, 7, 8, 2, 4, 5, 6, 1, 4, 5, 7, 1, 2, 3, 6, 1, 2, 4, 6, 7, 8, 3, 6, 7, 1, 3, 4, 5, 8, 3, 4, 6, 8, 1, 2, 5, 8, 1, 3, 5, 6, 7, 2, 5, 6, 8, 2, 3, 4, 7, 2, 3, 5, 7, 8, 1, 4, 7, 8, 2, 4, 5, 6, 1, 4, 5, 7, 1, 2, 3, 6, 1, 2, 4, 6, 7, 8, 3, 6, 7, 1, 3, 4, 5, 8, 3, 4, 6, 8, 1, 2, 5, 8
Offset: 1

Author

Susanna Cuyler, Nov 14 2010

Keywords

Comments

Each successive block of length 7 is obtained by adding 5 mod 8 to the previous block.

Examples

			The period is 1356725 6823472 3578147 8245614 5712361 2467836 7134583 4681258.
		

Crossrefs

Cf. A010887.

Programs

  • Haskell
    a181753 n = a181753_list !! (n-1)
    a181753_list = concat $ iterate
                   (map ((+ 1) . flip mod 8 . (+ 4))) [1,3,5,6,7,2,5]
    -- Reinhard Zumkeller, Nov 09 2014

Formula

From Chai Wah Wu, Jun 13 2020: (Start)
a(n) = a(n-1) - a(n-7) + a(n-8) - a(n-14) + a(n-15) - a(n-21) + a(n-22) - a(n-28) + a(n-29) - a(n-35) + a(n-36) - a(n-42) + a(n-43) - a(n-49) + a(n-50) for n > 50.
G.f.: x*(-8*x^49 + 3*x^48 + 3*x^47 + x^46 - 7*x^45 + 2*x^44 + 2*x^43 - 7*x^42 - 2*x^41 + 6*x^40 + 2*x^39 - 6*x^38 + 4*x^37 - 4*x^36 - 6*x^35 + x^34 + x^33 + 3*x^32 - 5*x^31 + 6*x^30 - 2*x^29 - 5*x^28 - 4*x^27 + 4*x^26 + 4*x^25 - 4*x^24 - 4*x^21 - x^20 - x^19 + 5*x^18 - 3*x^17 + 2*x^16 - 6*x^15 - 3*x^14 + 2*x^13 + 2*x^12 - 2*x^11 - 2*x^10 + 4*x^9 - 4*x^8 - 2*x^7 - 3*x^6 + 5*x^5 - x^4 - x^3 - 2*x^2 - 2*x - 1)/(x^50 - x^49 + x^43 - x^42 + x^36 - x^35 + x^29 - x^28 + x^22 - x^21 + x^15 - x^14 + x^8 - x^7 + x - 1). (End)

A176998 a(n) = binary "k-number" for n-rowed Kayles.

Original entry on oeis.org

1, 10, 11, 1, 100, 11, 10, 1, 100, 10, 110, 100, 1, 10, 111, 1, 100, 11, 10, 1, 100, 110, 111, 100, 1, 10, 1000, 101, 100, 111, 10, 1, 1000, 110, 111, 100, 1, 10, 11, 1, 100, 111, 10, 1, 1000, 10, 111, 100, 1, 10, 1000, 1, 100, 111, 10, 1, 100, 10, 111, 100, 1, 10, 1000, 1, 100, 111, 10, 1, 1000, 110
Offset: 1

Author

Susanna Cuyler, Dec 19 2010

Keywords

Comments

See Gardner for precise definition.

References

  • M. Gardner, Mathematical Carnival, Random House, NY, 1975; page 215.

A074742 a(n) = (n^3 + 6n^2 - n + 12)/6.

Original entry on oeis.org

2, 3, 7, 15, 28, 47, 73, 107, 150, 203, 267, 343, 432, 535, 653, 787, 938, 1107, 1295, 1503, 1732, 1983, 2257, 2555, 2878, 3227, 3603, 4007, 4440, 4903, 5397, 5923, 6482, 7075, 7703, 8367, 9068, 9807, 10585, 11403, 12262, 13163, 14107, 15095, 16128, 17207, 18333
Offset: 0

Author

Susanna Cuyler, Sep 06 2002

Keywords

References

  • A. Schultze, Advanced Algebra, Macmillan, London, 1910; p. 552.

Crossrefs

Cf. A027965.

Programs

  • Magma
    [(n^3 + 6*n^2 - n + 12)/6: n in [0..50]]; // Vincenzo Librandi, Jan 13 2012
  • Mathematica
    Table[(n^3 + 6n^2 - n + 12)/6, {n, 0, 49}] (* Alonso del Arte, Jan 13 2012 *)
    CoefficientList[Series[(2-5x+7x^2-3x^3)/(1-x)^4,{x,0,50}],x] (* or *) LinearRecurrence[ {4,-6,4,-1},{2,3,7,15},50] (* Harvey P. Dale, Aug 05 2022 *)
  • PARI
    a(n)=n*(n^2+6*n-1)/6+2 \\ Charles R Greathouse IV, Jan 13 2012
    

Formula

From R. J. Mathar, Sep 23 2008: (Start)
G.f.: (2 - 5*x + 7*x^2 - 3*x^3)/(1-x)^4.
a(n) = A027965(n+1), n > 0. (End)
E.g.f.: exp(x)*(12 + 6*x + 9*x^2 + x^3)/6. - Stefano Spezia, Jul 12 2023

A020767 Product_{k=1..n} b(k), where b(k) = binary expansion of k (A007088) but read as if it were a decimal number.

Original entry on oeis.org

1, 1, 10, 110, 11000, 1111000, 122210000, 13565310000, 13565310000000, 13578875310000000, 13714664063100000000, 13865525367794100000000, 15252077904573510000000000, 16792537772935434510000000000, 18639716927958332306100000000000, 20708725506961707192077100000000000
Offset: 0

Author

Susanna Cuyler, May 23 2003

Keywords

Examples

			a(4) = 1*10*11*100 = 11000.
		

Crossrefs

Partial products of A007088.

A005354 Number of asymmetric planar trees with n nodes.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 3, 9, 28, 85, 262, 827, 2651, 8626, 28507, 95393, 322938, 1104525, 3812367, 13266366, 46504495, 164098390, 582521687, 2079133141, 7457788295, 26872946466, 97238824018, 353218128299, 1287657977946, 4709784136316
Offset: 0

Keywords

Comments

a(13) in the Labelle table is a typographical error. - R. J. Mathar, Feb 03 2010

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    From R. J. Mathar, Feb 03 2010: (Start)
    A000108 := proc(n) binomial(2*n,n)/(n+1) ; end proc:
    A007727 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do a := a+binomial(2*d,d)*numtheory[mobius](n/d) ; end do ; a ; end proc;
    A022553 := proc(n) A007727(n)/2/n ; end proc:
    A005354 := proc(n) local a; if n <=1 then 1; else a := A022553(n-1) ; a := a-A000108(n-1)/2 ; if type(n,'even') then a := a-A000108(n/2-1)/2 ; end if; a ; end if; end proc: seq(A005354(n),n=0..20) ; (End)
  • Mathematica
    a[0] = a[1] = 1; a[n_] := DivisorSum[n-1, MoebiusMu[(n-1)/#]*Binomial[2#, #]&]/(2(n-1)) - CatalanNumber[n-1]/2 - Boole[EvenQ[n]]*CatalanNumber[n/2 - 1]/2; Table[a[n], {n, 0, 29}] (* Jean-François Alcover, May 09 2012, after R. J. Mathar, updated Jan 31 2018 *)

Formula

From Christian G. Bower, Dec 15 1999: (Start)
G.f.: 1+B(x)+(C(x^2)-C(x)^2)/2 where B is g.f. of A022553(n-1) and C is g.f. of A000108(n-1).
a(n) = A022553(n-1) - A000108(n-2)/2 - (if n is even) A000108(n/2-1)/2. (End)

Extensions

More terms from Christian G. Bower, Dec 15 1999

A005355 Number of asymmetric permutation rooted trees with n nodes.

Original entry on oeis.org

0, 1, 1, 1, 3, 7, 21, 61, 187, 577, 1825, 5831, 18883, 61699, 203429, 675545, 2258291, 7592249, 25656477, 87096661, 296891287, 1015797379, 3487272317, 12008898531, 41471260883, 143588078449, 498343911529, 1733410858955, 6041795275027, 21098924740155
Offset: 0

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 1; a[n_] := a[n] = Sum[a[k]*a[n-k], {k, 1, n-1}] - If[EvenQ[n-1], a[(n-1)/2], 0]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Jan 04 2016 *)

Formula

Shifts left under transform T where Ta has g.f. (1-A(x^2))/(1-A(x)).

Extensions

More terms, formula from Christian G. Bower, Nov 15 1999