cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A027965 T(n, 2*n-3), T given by A027960.

Original entry on oeis.org

3, 7, 15, 28, 47, 73, 107, 150, 203, 267, 343, 432, 535, 653, 787, 938, 1107, 1295, 1503, 1732, 1983, 2257, 2555, 2878, 3227, 3603, 4007, 4440, 4903, 5397, 5923, 6482, 7075, 7703, 8367, 9068, 9807, 10585, 11403, 12262, 13163, 14107, 15095, 16128, 17207, 18333, 19507, 20730, 22003
Offset: 2

Views

Author

Keywords

Crossrefs

A column of triangle A027011.

Programs

  • GAP
    List([2..50], n-> (18-10*n+3*n^2+n^3)/6) # G. C. Greubel, Jun 30 2019
  • Magma
    [(18-10*n+3*n^2+n^3)/6: n in [2..50]]; // G. C. Greubel, Jun 30 2019
    
  • Mathematica
    LinearRecurrence[{4,-6,4,-1}, {3,7,15,28}, 50] (* G. C. Greubel, Jun 30 2019 *)
  • PARI
    vector(50, n, n++; (18-10*n+3*n^2+n^3)/6) \\ G. C. Greubel, Jun 30 2019
    
  • Sage
    [(18-10*n+3*n^2+n^3)/6 for n in (2..50)] # G. C. Greubel, Jun 30 2019
    

Formula

a(n+2) = A074742(n-1) = A008778(n) + 2 = A000297(n-1) + 3.
From Ralf Stephan, Feb 07 2004: (Start)
G.f.: x^2*(3 - 2*x)*(1 - x + x^2)/(1-x)^4.
Differences of A027966. (End)
From G. C. Greubel, Jun 30 2019: (Start)
a(n) = (18 - 10*n + 3*n^2 + n^3)/6.
E.g.f.: (-18 - 12*x + (18 - 6*x + 6*x^2 + x^3)*exp(x))/6. (End)

Extensions

Terms a(32) onward added by G. C. Greubel, Jun 30 2019

A144680 Triangle read by rows, lower half of an array formed by A004736 * A144328 (transform).

Original entry on oeis.org

1, 2, 3, 3, 5, 7, 4, 7, 11, 14, 5, 9, 15, 21, 25, 6, 11, 19, 28, 36, 41, 7, 13, 23, 35, 47, 57, 63, 8, 15, 27, 42, 58, 73, 85, 92, 9, 17, 31, 49, 69, 89, 107, 121, 129, 10, 19, 35, 56, 80, 105, 129, 150, 166, 175
Offset: 1

Views

Author

Gary W. Adamson, Sep 19 2008

Keywords

Comments

Triangle read by rows, lower half of an array formed by A004736 * A144328 (transform).

Examples

			The array is formed by A004736 * A144328 (transform) where A004736 = the natural number decrescendo triangle and A144328 = a crescendo triangle. First few rows of the array =
  1, 1,  1,  1,  1,  1, ...
  2, 3,  3,  3,  3,  3, ...
  3, 5,  7,  7,  7,  7, ...
  4, 7, 11, 14, 14, 14, ...
  5, 9, 15, 21, 25, 25, ...
  ...
Triangle begins as:
   1;
   2,  3;
   3,  5,  7;
   4,  7, 11, 14;
   5,  9, 15, 21, 25;
   6, 11, 19, 28, 36,  41;
   7, 13, 23, 35, 47,  57,  63;
   8, 15, 27, 42, 58,  73,  85,  92;
   9, 17, 31, 49, 69,  89, 107, 121, 129;
  10, 19, 35, 56, 80, 105, 129, 150, 166, 175;
  ...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= (3*(k^2-k+2)*n - k*(k-1)*(2*k-1))/6;
    Table[T[n, k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Oct 18 2021 *)
  • Sage
    def A144680(n,k): return (3*(k^2-k+2)*n - k*(k-1)*(2*k-1))/6
    flatten([[A144680(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Oct 18 2021

Formula

Sum_{k=1..n} T(n, k) = A006008(n).
From G. C. Greubel, Oct 18 2021: (Start)
T(n, k) = (1/6)*( 3*(k^2 - k + 2)*n - k*(k-1)*(2*k-1) ).
T(n, n) = A004006(n).
T(n, n-1) = A050407(n+2).
T(n, n-2) = A027965(n-1) = A074742(n-2). (End)

A338760 Subword complexity of the infinite word Prod_{i>=1} Prod_{j=1..i} a^(i-j+1) b^j.

Original entry on oeis.org

1, 2, 4, 8, 15, 28, 47, 73, 107, 150, 203, 267, 343, 432, 535, 653, 787, 938, 1107, 1295, 1503, 1732, 1983, 2257, 2555, 2878, 3227, 3603, 4007, 4440, 4903, 5397, 5923, 6482, 7075, 7703, 8367, 9068, 9807, 10585, 11403, 12262, 13163, 14107, 15095, 16128, 17207
Offset: 0

Views

Author

Jeffrey Shallit, Nov 07 2020

Keywords

Comments

The infinite word is (ab)(aab.abb)(aaab.aabb.abbb)(aaaab.aaabb.aabbb.abbbb)... . Subword complexity is the number of distinct length-n blocks appearing in the sequence.

Examples

			For n=4 the only word omitted is baba.
		

Crossrefs

Formula

Equal to 2^n for n <= 3, and n^3/6+n^2/2-5n/3+3 = A074742(n-1) for n >= 4.
Showing 1-3 of 3 results.