A005381 Numbers k such that k and k-1 are composite.
9, 10, 15, 16, 21, 22, 25, 26, 27, 28, 33, 34, 35, 36, 39, 40, 45, 46, 49, 50, 51, 52, 55, 56, 57, 58, 63, 64, 65, 66, 69, 70, 75, 76, 77, 78, 81, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 99, 100, 105, 106, 111, 112, 115, 116, 117, 118, 119, 120, 121, 122
Offset: 1
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- J. Stauduhar, Table of n, a(n) for n = 1..10000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- R. P. Boas & N. J. A. Sloane, Correspondence, 1974
- B. W. J. Irwin, Recursive Modular Conjecture for pi(n).
Crossrefs
Programs
-
Maple
isA005381 := proc(n) not isprime(n) and not isprime(n-1) ; end proc: A005381 := proc(n) local a; option remember; if n = 1 then 9; else for a from procname(n-1)+1 do if isA005381(a) then return a; end if; end do: end if; end proc: # R. J. Mathar, Jul 14 2015 # second Maple program: q:= n-> ormap(isprime, [n, n-1]): remove(q, [$2..130])[]; # Alois P. Heinz, Dec 26 2021
-
Mathematica
Select[Range[2, 200], ! PrimeQ[# - 1] && ! PrimeQ[#] &]
-
PARI
is(n)=!isprime(n)&&!isprime(n-1) \\ M. F. Hasler, Jan 07 2019
-
Python
from sympy import isprime def ok(n): return n > 3 and not isprime(n) and not isprime(n-1) print([k for k in range(122) if ok(k)]) # Michael S. Branicky, Dec 26 2021
Formula
Conjecture: pi(n)=Sum_{k=1..n} k mod a(m) mod a(m-1) ... mod a(1) mod 2, for all values 1Benedict W. J. Irwin, May 04 2016
As a check, take n=9, m=2, a(m)=10. Then we must take the numbers 1 through 9 and reduce them mod 10 then mod 9 then mod 2. The results are 1,0,1,0,1,0,1,0,0, whose sum is 4 = pi(9), as predicted. - N. J. A. Sloane, May 05 2016
For an attempt at a proof for the conjecture above, see the link. If it is true, then for n>2, isprime(n)=(n mod x) mod 2, where x is the largest a(n)<=n. - Benedict W. J. Irwin, May 06 2016
Comments