cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005390 Number of Hamiltonian circuits on 2n X 6 rectangle.

Original entry on oeis.org

1, 37, 1072, 32675, 1024028, 32463802, 1033917350, 32989068162, 1053349394128, 33643541208290, 1074685815276400, 34330607094625734, 1096704136430950646, 35034883701169366742, 1119214052513009716324, 35754123580486507079548
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A145401.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1 -16*x -87*x^2 +1070*x^3 -2206*x^4 +1960*x^5 -2448*x^6 +1053*x^7 +392*x^8 -1517*x^9 +1012*x^10 -120*x^11 -28*x^12 -2*x^13)/(1 -53*x + 802*x^2 -4463*x^3 +10928*x^4 -13708*x^5 +12157*x^6 -7032*x^7 +11272*x^8 -15064*x^9 +13336*x^10 -5948*x^11 +792*x^12 +96*x^13 +4*x^14) )); // G. C. Greubel, Nov 17 2022
    
  • Mathematica
    Rest@CoefficientList[Series[x*(1 -16*x -87*x^2 +1070*x^3 -2206*x^4 +1960*x^5 -2448*x^6 +1053*x^7 +392*x^8 -1517*x^9 +1012*x^10 -120*x^11 -28*x^12 -2*x^13)/(1 -53*x + 802*x^2 -4463*x^3 +10928*x^4 -13708*x^5 +12157*x^6 -7032*x^7 +11272*x^8 -15064*x^9 +13336*x^10 -5948*x^11 +792*x^12 +96*x^13 +4*x^14), {x,0,40}], x] (* G. C. Greubel, Nov 17 2022 *)
  • SageMath
    def g(x): return x*(1 -16*x -87*x^2 +1070*x^3 -2206*x^4 +1960*x^5 -2448*x^6 +1053*x^7 +392*x^8 -1517*x^9 +1012*x^10 -120*x^11 -28*x^12 -2*x^13)/(1 -53*x + 802*x^2 -4463*x^3 +10928*x^4 -13708*x^5 +12157*x^6 -7032*x^7 +11272*x^8 -15064*x^9 +13336*x^10 -5948*x^11 +792*x^12 +96*x^13 +4*x^14)
    def A005390_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( g(x) ).list()
    a=A005390_list(40); a[1:] # G. C. Greubel, Nov 17 2022

Formula

a(n) = A145401(2*n). - Sean A. Irvine, Jun 11 2016
G.f.: x*(1 - 16*x - 87*x^2 + 1070*x^3 - 2206*x^4 + 1960*x^5 - 2448*x^6 + 1053*x^7 + 392*x^8 - 1517*x^9 + 1012*x^10 - 120*x^11 - 28*x^12 - 2*x^13)/(1 - 53*x + 802*x^2 - 4463*x^3 + 10928*x^4 - 13708*x^5 + 12157*x^6 - 7032*x^7 + 11272*x^8 - 15064*x^9 + 13336*x^10 - 5948*x^11 + 792*x^12 + 96*x^13 + 4*x^14). - G. C. Greubel, Nov 18 2022

Extensions

More terms from André Pönitz (poenitz(AT)htwm.de), Jun 11 2003