A005419 Number of nonequivalent dissections of a polygon into n heptagons by nonintersecting diagonals up to rotation and reflection.
1, 1, 3, 16, 112, 1020, 10222, 109947, 1230840, 14218671, 168256840, 2031152928, 24931793768, 310420597116, 3912823963482, 49853370677834, 641218583442360, 8316918403772790, 108686334145327785, 1429927553582849256, 18927697628428129728, 251931892228273729375
Offset: 1
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 1..850
- F. Harary, E. M. Palmer and R. C. Read, On the cell-growth problem for arbitrary polygons, Discr. Math. 11 (1975), 371-389.
Crossrefs
Column k=7 of A295260.
Programs
-
Mathematica
p=7; Table[(Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) + If[OddQ[n], If[OddQ[p], Binomial[(p-1)n/2, (n-1)/2]/n, (p+1)Binomial[((p-1)n-1)/2, (n-1)/2]/((p-2)n+2)], 3Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1, 2}]])/2, {n, 1, 20}] (* Robert A. Russell, Dec 11 2004 *)
Formula
See Mathematica code.
a(n) ~ 2^(6*n - 1) * 3^(6*n + 1/2) / (sqrt(Pi) * n^(5/2) * 5^(5*n + 5/2)). - Vaclav Kotesovec, Mar 13 2016
Extensions
More terms from Robert A. Russell, Dec 11 2004
Name edited by Andrew Howroyd, Nov 20 2017