cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005419 Number of nonequivalent dissections of a polygon into n heptagons by nonintersecting diagonals up to rotation and reflection.

Original entry on oeis.org

1, 1, 3, 16, 112, 1020, 10222, 109947, 1230840, 14218671, 168256840, 2031152928, 24931793768, 310420597116, 3912823963482, 49853370677834, 641218583442360, 8316918403772790, 108686334145327785, 1429927553582849256, 18927697628428129728, 251931892228273729375
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=7 of A295260.

Programs

  • Mathematica
    p=7; Table[(Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) + If[OddQ[n], If[OddQ[p], Binomial[(p-1)n/2, (n-1)/2]/n, (p+1)Binomial[((p-1)n-1)/2, (n-1)/2]/((p-2)n+2)], 3Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1, 2}]])/2, {n, 1, 20}] (* Robert A. Russell, Dec 11 2004 *)

Formula

See Mathematica code.
a(n) ~ 2^(6*n - 1) * 3^(6*n + 1/2) / (sqrt(Pi) * n^(5/2) * 5^(5*n + 5/2)). - Vaclav Kotesovec, Mar 13 2016

Extensions

More terms from Robert A. Russell, Dec 11 2004
Name edited by Andrew Howroyd, Nov 20 2017