cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005463 Number of simplices in barycentric subdivision of n-simplex.

Original entry on oeis.org

1, 63, 1932, 46620, 1020600, 21538440, 451725120, 9574044480, 207048441600, 4595022432000, 105006251750400, 2475732702643200, 60284572969420800, 1516762345722624000, 39433286715863040000, 1059143615076298752000, 29378569022287220736000, 841159994641469927424000
Offset: 4

Views

Author

Keywords

References

  • R. Austin, R. K. Guy, and R. Nowakowski, unpublished notes, circa 1987.
  • R. K. Guy, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Factorial(n-4)*StirlingSecond(n+2,n-3): n in [4..35]]; // G. C. Greubel, Nov 22 2022
    
  • Maple
    a:= n-> Stirling2(2+n,n-3)*(n-4)!:
    seq(a(n), n=4..21);  # Alois P. Heinz, Apr 27 2022
  • Mathematica
    Table[(n-4)!*StirlingS2[n+2, n-3], {n,4,35}] (* G. C. Greubel, Nov 22 2022 *)
  • SageMath
    [factorial(n-4)*stirling_number2(n+2,n-3) for n in range(4,36)] # G. C. Greubel, Nov 22 2022

Formula

Essentially Stirling numbers of second kind - see A028246.
a(n) = (n-4)! * Stirling2(n+2, n-3). - Alois P. Heinz, Apr 27 2022

Extensions

More terms from Alois P. Heinz, Apr 27 2022