A005472 Class numbers of Shanks' simplest cubic fields.
1, 1, 1, 1, 1, 1, 1, 4, 7, 4, 4, 4, 7, 4, 13, 7, 19, 7, 7, 7, 19, 19, 19, 16, 31, 19, 28, 19, 49, 31, 28, 31, 64, 43, 37, 127, 61, 52, 52, 52, 49, 100, 37, 112, 64, 67, 61, 76, 61, 76, 61, 61, 112, 76, 73, 67, 133, 91, 223, 169, 73, 112, 100, 169, 91, 121, 175
Offset: 1
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Robin Visser, Table of n, a(n) for n = 1..10000 (terms n = 1..100 from R. J. Mathar).
- D. Shanks, The simplest cubic fields, Math. Comp., 28 (1974), 1137-1152 (see Table 1 page 1140).
Programs
-
PARI
A175282(n)={ local(a); if(n==1, return(1), a=A175282(n-1)+1; while(1, if( isprime(a^2+3*a+9), return(a), a++ ); ) ) }; A005472(n)={ local(a,bnf,L,H); if(n==1, return(1)); a=A175282(n); bnf=bnfinit(x^3-a*x^2-(a+3)*x-1); L=ideallist(bnf,1,2); H=bnrclassnolist(bnf,L); return(H[1][1]); }; for(n=1,80, print1(A005472(n)," ") ); /* R. J. Mathar, Jun 06 2019 */
Extensions
Name edited by Robin Visser, Dec 06 2024
Comments