cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005516 Number of n-bead bracelets (turnover necklaces) with 12 red beads.

Original entry on oeis.org

1, 1, 7, 19, 72, 196, 561, 1368, 3260, 7105, 14938, 29624, 56822, 104468, 186616, 322786, 544802, 896259, 1444147, 2278640, 3532144, 5380034, 8070400, 11926928, 17393969, 25042836, 35638596, 50152013, 69855536
Offset: 12

Views

Author

Keywords

Comments

From Vladimir Shevelev, Apr 23 2011: (Start)
Also number of non-equivalent (turnover) necklaces of 12 beads each of them painted by one of n colors.
The sequence solves the so-called Reis problem about convex k-gons in case k=12 (see our comment to A032279). (End)

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=12 of A052307.

Programs

  • Mathematica
    k = 12; Table[(Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n + Binomial[If[OddQ[n], n - 1, n - If[OddQ[k], 2, 0]]/2, If[OddQ[k], k - 1, k]/2])/2, {n, k, 50}] (* Robert A. Russell, Sep 27 2004 *)
    k=12;CoefficientList[Series[x^k*(1/k Plus@@(EulerPhi[#] (1-x^#)^(-(k/#))&/@Divisors[k])+(1+x)/(1-x^2)^Floor[k/2+1])/2,{x,0,50}],x] (* Herbert Kociemba, Nov 04 2016 *)

Formula

Let s(n,k,d) = 1, if n==k (mod d), s(n,k,d) = 0, otherwise. Then a(n) = s(n,0,12)/6 + (n-6)*s(n,0,6)/72 + (n-4)*(n-8)*s(n,0,4)/384 + (n-3)*(n-6)*(n-9)*s(n,0,3)/1944 + (3840*C(n-1,11) + (n+1)*(n-2)*(n-4)*(n-6)*(n-8)*(n-10))/92160, if n is even; a(n) = (n-3)*(n-6)*(n-9)*s(n,0,3)/1944 + (3840*C(n-1,11) + (n-1)*(n-3)*(n-5)*(n-7)*(n-9)*(n-11))/92160, if n is odd. - Vladimir Shevelev, Apr 23 2011
From Herbert Kociemba, Nov 04 2016: (Start)
G.f.: 1/2*x^12*((1+x)/(1-x^2)^7 + 1/12*(1/(-1+x)^12 + 1/(-1+x^2)^6 + 2/(-1+x^3)^4 - 2/(-1+x^4)^3 + 2/(-1+x^6)^2 - 4/(-1+x^12))).
G.f.: k=12, x^k*((1/k)*(Sum_{d|k} phi(d)*(1 - x^d)^(-k/d)) + (1 + x)/(1 -x^2)^floor((k+2)/2))/2. (End)

Extensions

Sequence extended and description corrected by Christian G. Bower