A005530 Number of Boolean functions of n variables from Post class F(8,inf); number of degenerate Boolean functions of n variables.
2, 6, 38, 942, 325262, 25768825638, 129127208425774833206, 2722258935367507707190488025630791841374
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- I. Tomescu, Introducere in Combinatorica. Editura Tehnica, Bucharest, 1972, p. 129.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..12
- T. E. Allen, J. Goldsmith, N. Mattei, Counting, Ranking, and Randomly Generating CP-nets, 2014.
- R. K. Guy, Letter to N. J. A. Sloane, Mar 1974
- Y. Raekow and K. Ziegler, A taxonomy of non-cooperatively computable functions, Presented at WEWoRC 2011 (link to conference record).
- I. Tomescu, Excerpts from "Introducese in Combinatorica" (1972), pp. 230-1, 44-5, 128-9. (Annotated scanned copy)
- Index entries for sequences related to Boolean functions
Programs
-
Mathematica
Sum[(-1)^(j + 1) Binomial[n, j] 2^2^(n - j), {j, 1, n}]
-
PARI
for(n=1,10, print1(sum(j=1,n, (-1)^(j+1)*binomial(n,j)*2^(2^(n-j))), ", ")) \\ G. C. Greubel, Oct 06 2017
Formula
a(n) = Sum_{j=1..n} (-1)^(j+1)*binomial(n,j)*2^(2^(n-j)).
Extensions
More terms from Vladeta Jovovic, Goran Kilibarda