cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005588 Number of free binary trees admitting height n.

Original entry on oeis.org

2, 7, 52, 2133, 2590407, 3374951541062, 5695183504479116640376509, 16217557574922386301420514191523784895639577710480, 131504586847961235687181874578063117114329409897550318273792033024340388219235081096658023517076950
Offset: 1

Views

Author

N. J. A. Sloane; entry revised by N. J. A. Sloane, Aug 31 2012

Keywords

Comments

a(n) is the number of free 3-trees which have a rooting as a binary tree of height n.
a(n) <= A002658(n+1) [Harary, et al.] "This is because any tree with a binary rooting of height h corresponds to a planted 3-tree of height h+1. [...] In general there are trees with more than one binary rooting of height h, so equality does not hold". - Michael Somos, Sep 02 2012

Examples

			+---------+
| o   o o | a(1) = 2
| |    \| |
| o     o |
+---------------------------------------------+
| o   o o     o   o o   o o   o o o   o o o o | a(2) = 7
| |    \|     |    \|   | |   |  \|    \| |/  |
| o     o   o o   o o   o o   o   o     o o   |
| |     |    \|    \|    \|    \ /       \|   |
| o     o     o     o     o     o         o   |
+---------------------------------------------+
a(3) = 52 while A002658(4) = 56 because there are 56 - 52 = 4 free binary trees admitting height 3 which have two rootings, while the rest have only one rooting. The four trees have degree sequences 32111, 322111, 3222111, 3321111. - _Michael Somos_, Sep 02 2012
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    bin2[n_] = Binomial[n, 2];
    bin3[n_] = Binomial[n, 3];
    p[0] = q[0] = 0;
    p[1] = q[1] = 1;
    q[h1_] := q[h1] = With[{h = h1-1}, q[h] + p[h]];
    p[h1_] := p[h1] = With[{h = h1-1}, bin2[1 + p[h]] + p[h] q[h]];
    a[h_] := a[h] = bin3[2 + p[h]] + bin2[1 + p[h]] q[h];
    b[h_] := b[h] = bin2[1 + p[h]];
    e[h_, i_] := e[h, i] = 1 + Sum[d[j, i], {j, h-1}];
    d[h_, h_] := 0; d[h_, i_] := p[h] /; i > h;
    d[h1_, i1_] := d[h1, i1] = With[{h = h1-1, i = i1-1}, bin2[1 + d[h, i]] + d[h, i] e[h, i]]; d[h_, 1] := d[h, 1] = p[h] - p[h-1];
    e[h_, 1] := e[h, 1] = p[h-1];
    t1[h_] := Sum[a[h-i] - bin3[2 + d[h-i, i]] - bin2[1 + d[h-i, i]] e[h-i, i], {i, Quotient[h, 2]}];
    t2[h_] := Sum[b[h-i+1] - bin2[1 + d[h-i+1, i]], {i, Quotient[h+1, 2]}];
    t[h_] := bin2[1 + p[h]] + t1[h] + t2[h];
    Table[t[n], {n, 1, 12}] (* Jean-François Alcover, Apr 22 2013, program corrected and improved by Michael Somos *)

Formula

Harary et al. give a complicated recurrence.