A005588 Number of free binary trees admitting height n.
2, 7, 52, 2133, 2590407, 3374951541062, 5695183504479116640376509, 16217557574922386301420514191523784895639577710480, 131504586847961235687181874578063117114329409897550318273792033024340388219235081096658023517076950
Offset: 1
Examples
+---------+ | o o o | a(1) = 2 | | \| | | o o | +---------------------------------------------+ | o o o o o o o o o o o o o o o | a(2) = 7 | | \| | \| | | | \| \| |/ | | o o o o o o o o o o o o | | | | \| \| \| \ / \| | | o o o o o o o | +---------------------------------------------+ a(3) = 52 while A002658(4) = 56 because there are 56 - 52 = 4 free binary trees admitting height 3 which have two rootings, while the rest have only one rooting. The four trees have degree sequences 32111, 322111, 3222111, 3321111. - _Michael Somos_, Sep 02 2012
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- David Wassermann, Table of n, a(n) for n = 1..12
- Harary, Frank; Palmer, Edgar M.; Robinson, Robert W., Counting free binary trees admitting a given height, J. Combin. Inform. System Sci. 17 (1992), no. 1-2, 175--181. MR1216977 (94c:05039)
- Harary, Frank; Palmer, Edgar M.; Robinson, Robert W., Counting free binary trees admitting a given height, J. Combin. Inform. System Sci. 17 (1992), no. 1-2, 175-181. (Annotated scanned copy)
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
- Index entries for "core" sequences
Programs
-
Mathematica
bin2[n_] = Binomial[n, 2]; bin3[n_] = Binomial[n, 3]; p[0] = q[0] = 0; p[1] = q[1] = 1; q[h1_] := q[h1] = With[{h = h1-1}, q[h] + p[h]]; p[h1_] := p[h1] = With[{h = h1-1}, bin2[1 + p[h]] + p[h] q[h]]; a[h_] := a[h] = bin3[2 + p[h]] + bin2[1 + p[h]] q[h]; b[h_] := b[h] = bin2[1 + p[h]]; e[h_, i_] := e[h, i] = 1 + Sum[d[j, i], {j, h-1}]; d[h_, h_] := 0; d[h_, i_] := p[h] /; i > h; d[h1_, i1_] := d[h1, i1] = With[{h = h1-1, i = i1-1}, bin2[1 + d[h, i]] + d[h, i] e[h, i]]; d[h_, 1] := d[h, 1] = p[h] - p[h-1]; e[h_, 1] := e[h, 1] = p[h-1]; t1[h_] := Sum[a[h-i] - bin3[2 + d[h-i, i]] - bin2[1 + d[h-i, i]] e[h-i, i], {i, Quotient[h, 2]}]; t2[h_] := Sum[b[h-i+1] - bin2[1 + d[h-i+1, i]], {i, Quotient[h+1, 2]}]; t[h_] := bin2[1 + p[h]] + t1[h] + t2[h]; Table[t[n], {n, 1, 12}] (* Jean-François Alcover, Apr 22 2013, program corrected and improved by Michael Somos *)
Formula
Harary et al. give a complicated recurrence.
Comments