Original entry on oeis.org
2, 9, 61, 2194, 2592601, 3374954133663, 5695183504482491594510172, 16217557574922386301420519886707289378131172220652, 131504586847961235687181874578063117114329409897566535831366955410641808739121788386036154689297602
Offset: 1
a(9) = 2 + 7 + 52 + 2133 + 2590407 + 3374951541062 + 5695183504479116640376509 + 16217557574922386301420514191523784895639577710480 + 131504586847961235687181874578063117114329409897550318273792033024340388219235081096658023517076950.
A006894
Number of planted 3-trees of height < n.
Original entry on oeis.org
1, 2, 4, 11, 67, 2279, 2598061, 3374961778892, 5695183504492614029263279, 16217557574922386301420536972254869595782763547561, 131504586847961235687181874578063117114329409897615188504091716162522225834932122128288032336298142
Offset: 1
x + 2*x^2 + 4*x^3 + 11*x^4 + 67*x^5 + 2279*x^6 + 2598061*x^7 + 3374961778892*x^8 + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- David Wasserman, Table of n, a(n) for n = 1..14
- Luc Devroye, Michael R. Doboli, Noah A. Rosenberg, and Stephan Wagner, Tree height and the asymptotic mean of the Colijn-Plazzotta rank of unlabeled binary rooted trees, arXiv:2409.18956 [math.CO], 2024. See p. 5.
- F. Harary et al., Counting free binary trees admitting a given height, J. Combin. Inform. System Sci. 17 (1992), no. 1-2, 175--181. MR1216977 (94c:05039)
- Harary, Frank; Palmer, Edgar M.; Robinson, Robert W., Counting free binary trees admitting a given height, J. Combin. Inform. System Sci. 17 (1992), no. 1-2, 175-181. (Annotated scanned copy)
- E. Lemoine, Note sur deux nouvelles décompositions des nombres entiers, Assoc. française pour l'avancement des sciences. Vol. 29, Tome 2, pp. 72-74, 1900.
- Sergey Zimnitskiy, Illustration of initial terms of A006894 and A002658
- Index entries for "core" sequences
- Index entries for sequences related to rooted trees
-
A006894 := proc(n) option remember; if n=1 then 1 else A006894(n-1)*(A006894(n-1)+1)/2+1 fi end; [ seq(A006894(i),i=1..11) ];
a[ -1]:=0:a[0]:=1:for n from 1 to 50 do a[n]:=binomial(a[n-1]+2,2) od: seq(a[n]+1, n=-1..9); # Zerinvary Lajos, Jun 08 2007
a[1]:=1:for n from 2 to 10 do a[n]:=a[n-1]*(a[n-1]+1)/2+1 od: seq(a[n],n=1..10); # Miklos Kristof, Dec 11 2007
-
NestList[(#(#+1))/2+1&,1,12] (* Harvey P. Dale, May 24 2011 *)
-
v=vector(15);v[1]=1;for(i=2,#v,v[i]=binomial(v[i-1]+1,2)+1);v \\ Charles R Greathouse IV, Feb 11 2011
-
{a(n) = if( n<1, 0, 1 + binomial( 1 + a(n-1), 2))} /* Michael Somos, Jan 01 2013 */
-
from functools import lru_cache
@lru_cache(maxsize=None)
def A006894(n): return ((m:=A006894(n-1))*(m+1)>>1)+1 if n else 0 # Chai Wah Wu, Feb 20 2023
A002658
a(0) = a(1) = 1; for n > 0, a(n+1) = a(n)*(a(0) + ... + a(n-1)) + a(n)*(a(n) + 1)/2.
Original entry on oeis.org
1, 1, 2, 7, 56, 2212, 2595782, 3374959180831, 5695183504489239067484387, 16217557574922386301420531277071365103168734284282
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- David Wasserman, Table of n, a(n) for n = 0..13
- Mayfawny Bergmann, Efficiency of Lossless Compression of a Binary Tree via its Minimal Directed Acyclic Graph Representation. Rose-Hulman Undergraduate Mathematics Journal: Vol. 15 : Iss. 2, Article 1. (2014).
- Luc Devroye, Michael R. Doboli, Noah A. Rosenberg, and Stephan Wagner, Tree height and the asymptotic mean of the Colijn-Plazzotta rank of unlabeled binary rooted trees, arXiv:2409.18956 [math.CO], 2024. See p. 5.
- A. Erdelyi and I. M. H. Etherington, Some problems of non-associative combinations (II), Edinburgh Math. Notes, 32 (1940), pp. vii-xiv.
- I. M. H. Etherington, Non-associate powers and a functional equation, Math. Gaz. 21 (1937), 36-39; addendum 21 (1937), 153.
- I. M. H. Etherington, On non-associative combinations, Proc. Royal Soc. Edinburgh, 59 (Part 2, 1938-39), 153-162. [Annotated scanned copy]
- I. M. H. Etherington, Some problems of non-associative combinations (I), Edinburgh Math. Notes, 32 (1940), pp. i-vi. Part II is by A. Erdelyi and I. M. H. Etherington, and is on pages vii-xiv of the same issue.
- F. Harary, et al., Counting free binary trees admitting a given height, J. Combin. Inform. System Sci. 17 (1992), no. 1-2, 175--181. MR1216977 (94c:05039)
- Frank Harary, Edgar M. Palmer, and Robert W. Robinson, Counting free binary trees admitting a given height, J. Combin. Inform. System Sci. 17 (1992), no. 1-2, 175-181. (Annotated scanned copy)
- Z. A. Melzak, A note on homogeneous dendrites, Canad. Math. Bull., 11 (1968), 85-93.
- David E. Narváez, Proof of polynomial recursive equation of order 2, Jun 05 2025.
- Sergey Zimnitskiy, Illustration of initial terms of A006894 and A002658
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
- Index entries for "core" sequences
-
a002658 n = a002658_list !! n
a002658_list = 1 : 1 : f [1,1] where
f (x:xs) = y : f (y:x:xs') where y = x * sum xs + x * (x + 1) `div` 2
-- Reinhard Zumkeller, Apr 10 2012
-
s := proc(n) local i,j,ans; ans := [ 1 ]; for i to n do ans := [ op(ans),ans[ i ]*(add(j,j=ans)-ans[ i ])+ans[ i ]*(ans[ i ]+1)/2 ] od; RETURN(ans); end; t1 := s(10); A002658 := n->t1[n];
-
Clear[a, b]; a[0] = a[1] = 1; b[0] = b[1] = 1; b[n_] := b[n] = b[n-1] + a[n-1]; a[n_] := a[n] = (a[n-1]+1)*a[n-1]/2 + a[n-1]*b[n-1]; Table[a[n], {n, 0, 9}] (* Jean-François Alcover, Jan 31 2013, after Frank Harary *)
RecurrenceTable[{a[n] == a[n-1]*(a[n-1]/a[n-2]+(a[n-1]+a[n-2])/2), a[0]==1, a[1]==1},a,{n,0,10}] (* Vaclav Kotesovec, May 21 2015 *)
-
{a(n) = local(a1, a2); if( n<2, n>=0, a2 = a(n-1); a1 = a(n-2); a2 * (a2 / a1 + (a1 + a2) / 2))} /* Michael Somos, Mar 06 2012 */
-
print1(s=a=1);for(i=1,9,print1(","a*=(1-a)/2+s);s+=a) \\ M. F. Hasler, Jan 21 2015
-
from itertools import islice
def agen():
yield 1
an = s = 1
while True:
yield an
an1 = an*s + an*(an+1)//2
an, s = an1, s+an
print(list(islice(agen(), 10))) # Michael S. Branicky, Nov 14 2022
Showing 1-3 of 3 results.
Comments