A001190
Wedderburn-Etherington numbers: unlabeled binary rooted trees (every node has outdegree 0 or 2) with n endpoints (and 2n-1 nodes in all).
Original entry on oeis.org
0, 1, 1, 1, 2, 3, 6, 11, 23, 46, 98, 207, 451, 983, 2179, 4850, 10905, 24631, 56011, 127912, 293547, 676157, 1563372, 3626149, 8436379, 19680277, 46026618, 107890609, 253450711, 596572387, 1406818759, 3323236238, 7862958391, 18632325319, 44214569100, 105061603969
Offset: 0
G.f. = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 11*x^7 + 23*x^8 + 46*x^9 + 98*x^10 + ...
From _Joerg Arndt_, Jun 29 2014: (Start)
The a(6+1) = 11 rooted trees with 6 nodes as described in the comment are:
: level sequence outdegrees (dots for zeros)
: 1: [ 0 1 2 3 4 5 ] [ 1 1 1 1 1 . ]
: O--o--o--o--o--o
:
: 2: [ 0 1 2 3 4 4 ] [ 1 1 1 2 . . ]
: O--o--o--o--o
: .--o
:
: 3: [ 0 1 2 3 4 3 ] [ 1 1 2 1 . . ]
: O--o--o--o--o
: .--o
:
: 4: [ 0 1 2 3 4 2 ] [ 1 2 1 1 . . ]
: O--o--o--o--o
: .--o
:
: 5: [ 0 1 2 3 4 1 ] [ 2 1 1 1 . . ]
: O--o--o--o--o
: .--o
:
: 6: [ 0 1 2 3 3 2 ] [ 1 2 2 . . . ]
: O--o--o--o
: .--o
: .--o
:
: 7: [ 0 1 2 3 3 1 ] [ 2 1 2 . . . ]
: O--o--o--o
: .--o
: .--o
:
: 8: [ 0 1 2 3 2 3 ] [ 1 2 1 . 1 . ]
: O--o--o--o
: .--o--o
:
: 9: [ 0 1 2 3 2 1 ] [ 2 2 1 . . . ]
: O--o--o--o
: .--o
: .--o
:
: 10: [ 0 1 2 3 1 2 ] [ 2 1 1 . 1 . ]
: O--o--o--o
: .--o--o
:
: 11: [ 0 1 2 2 1 2 ] [ 2 2 . . 1 . ]
: O--o--o
: .--o
: .--o--o
:
(End)
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 307.
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 55.
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 295-316.
- A. Gutiérrez-Sánchez, Shen-colored tournaments, thesis, UNAM, 2012.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.52.
- Richard P. Stanley, Catalan Numbers, Cambridge, 2015, p. 133.
- Alois P. Heinz, Table of n, a(n) for n = 0..2545 (first 201 terms from T. D. Noe)
- R. Arratia, S. Garibaldi, and A. W. Hales, The van den Berg--Kesten--Reimer inequality for infinite spaces, arXiv preprint arXiv:1508.05337 [math.PR], 2015.
- Yu Hin (Gary) Au, Fatemeh Bagherzadeh, and Murray R. Bremner, Enumeration and Asymptotic Formulas for Rectangular Partitions of the Hypercube, arXiv:1903.00813 [math.CO], 2019.
- F. Bagherzadeh, M. R. Bremner, and S. Madariaga, Jordan trialgebras and post-Jordan algebras, arXiv:1611.01214 [math.RA], 2016.
- Nils Berglund and Yvain Bruned, BPHZ renormalisation and vanishing subcriticality limit of the fractional Phi_d^3 model, arXiv:1907.13028 [math.PR], 2019.
- Nils Berglund and Christian Kuehn, Model Spaces of Regularity Structures for Space-Fractional SPDEs, Journal of Statistical Physics, Springer Verlag, 2017, 168 (2), pp. 331-368; HAL Id: hal-01432157.
- Mayfawny Bergmann, Efficiency of Lossless Compression of a Binary Tree via its Minimal Directed Acyclic Graph Representation. Rose-Hulman Undergraduate Mathematics Journal: Vol. 15: Iss. 2, Article 1 (2014).
- Sara Billey, Matjaz Konvalinka, and Frederick A Matsen IV, On the enumeration of tanglegrams and tangled chains, arXiv:1507.04976 [math.CO], 2015.
- Sara Billey, Matjaž Konvalinka, and Frederick A. Matsen IV, On trees, tanglegrams, and tangled chains, hal-02173394 [math.CO], 2020.
- Henry Bottomley, Illustration of initial terms.
- M. Bremner, S. Madariaga, and L. A. Peresi, Structure theory for the group algebra of the symmetric group, with applications to polynomial identities for the octonions, arXiv:1407.3810 [math.RA], 2014.
- Nicolas Broutin and Philippe Flajolet, The distribution of height and diameter in random non-plane binary trees, Random Struct. Algorithms 41, No. 2, 215-252 (2012).
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Peter J. Cameron, Some treelike objects, Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 150, 155-183. MR0891613 (89a:05009). See p. 155. - _N. J. A. Sloane_, Apr 18 2014
- Lorenzo Cappello and Julia A. Palacios, Sequential importance sampling for multi-resolution Kingman-Tajima coalescent counting, arXiv:1902.05527 [stat.AP], 2019.
- Sean Cleary, M. Fischer, R. C. Griffiths, and R. Sainudiin, Some distributions on finite rooted binary trees, UCDMS Research Report NO. UCDMS2015/2, School of Mathematics and Statistics, University of Canterbury, Christchurch, NZ, 2015.
- S. J. Cyvin, J. Brunvoll, and B. N. Cyvin, Enumeration of constitutional isomers of polyenes, J. Molec. Struct. (Theochem) 357, no. 3 (1995) 255-261.
- N. G. de Bruijn and D. A. Klarner, Multisets of aperiodic cycles, SIAM J. Algebraic Discrete Methods 3 (1982), no. 3, 359-368. MR0666861(84i:05008). See p. 367. - _N. J. A. Sloane_, Mar 25 2014
- Jimmy Devillet and Bruno Teheux, Associative, idempotent, symmetric, and order-preserving operations on chains, arXiv:1805.11936 [math.RA], 2018.
- Luc Devroye, Michael R. Doboli, Noah A. Rosenberg, and Stephan Wagner, Tree height and the asymptotic mean of the Colijn-Plazzotta rank of unlabeled binary rooted trees, arXiv:2409.18956 [math.CO], 2024. See p. 21.
- Filippo Disanto and Thomas Wiehe, Some combinatorial problems on binary rooted trees occurring in population genetics, arXiv preprint arXiv:1112.1295 [math.CO], 2011-2012.
- Michael R. Doboli, Hsien-Kuei Hwang, and Noah A. Rosenberg, Periodic Behavior of the Minimal Colijn-Plazzotta Rank for Trees with a Fixed Number of Leaves, In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 18:1-18:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2024).
- Vladimir Dotsenko and Irvin Roy Hentzel, On the conjecture of Kashuba and Mathieu about free Jordan algebras, arXiv:2507.00437 [math.RA], 2025. See p. 14.
- I. M. H. Etherington, Non-associate powers and a functional equation, Math. Gaz. 21 (1937), 36-39 and 153.
- I. M. H. Etherington, On non-associative combinations, Proc. Royal Soc. Edinburgh, 59 (Part 2, 1938-39), 153-162. [Annotated scanned copy]
- I. M. H. Etherington, On non-associative combinations, Proc. Royal Soc. Edinburgh, 59 (Part 2, 1938-39), 153-162.
- I. M. H. Etherington, Some problems of non-associative combinations (I), Edinburgh Math. Notes, 32 (1940), pp. i-vi.
- A. Erdelyi and I. M. H. Etherington, Some problems of non-associative combinations (II), Edinburgh Math. Notes, 32 (1940), pp. vii-xiv.
- V. Fack, S. Lievens and J. Van der Jeugt, On the diameter of the rotation graph of binary coupling trees. Discrete Math. 245 (2002), no. 1-3, 1--18. MR1887046 (2003i:05047).
- Steven R. Finch, Otter's Tree Enumeration Constants. [Broken link]
- Steven R. Finch, Otter's Tree Enumeration Constants. [Wayback Machine]
- Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, 2009; see page 72
- J. N. Franklin and S. W. Golomb, A Function-Theoretic Approach to the Study of Nonlinear Recurring Sequences, Pacific J. Math., Vol. 56, p. 467, 1975.
- Ira M. Gessel, Counting tanglegrams with species, arXiv:1509.03867 [math.CO], 2020.
- Piet Hut, Home Page
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 43
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 45
- V. P. Johnson, Enumeration Results on Leaf Labeled Trees, Ph.D. Dissertation, University of South Carolina, 2012.
- M. Konvalinka and S. Wagner, The shape of random tanglegrams, arXiv preprint arXiv:1512.01168 [math.CO], 2015.
- A. Ledda, G. Achaz, T. Wiehe and L. Ferretti, Decomposing the site frequency spectrum: the impact of tree topology on neutrality tests, arXiv preprint arXiv:1510.06748 [q-bio.PE], 2015.
- Eunjeong Lee, Mikiya Masuda, and Seonjeong Park, Toric Richardson varieties of Catalan type and Wedderburn-Etherington numbers, arXiv:2105.12274 [math.AG], 2021.
- F. Murtagh, Counting dendrograms: a survey, Discrete Applied Mathematics, 7 (1984), 191-199.
- C. D. Olds, Problem 4277, Amer. Math. Monthly, 56 (1949), 697-699.
- C. D. Olds (Proposer) and H. W. Becker (Discussion), Problem 4277, Amer. Math. Monthly 56 (1949), 697-699. [Annotated scanned copy]
- R. C. Read, Letter to N. J. A. Sloane, Oct. 29, 1976
- J. Riordan, Letter to N. J. A. Sloane, Oct. 1970
- David Serena and William J. Buchanan, Equivalence Classes Induced by Binary Tree Isomorphism -- Generating Functions, arXiv:2503.02663 [math.CO], 2025. See p. 5.
- Chloe E. Shiff and Noah A. Rosenberg, Enumeration of rooted binary perfect phylogenies, arXiv:2410.14915 [q-bio.PE], 2024. See pp. 2, 5, 9.
- F. Sievers, G. M. Hughes, and D. G. Higgins, Systematic Exploration of Guide-Tree Topology Effects for Small Protein Alignments, BMC Bioinformatics 2014, 15:338 (Mentions A001190).
- J. H. M. Wedderburn, The functional equation g(x^2) = 2ax + [g(x)]^2, Ann. Math., 24 (1922-23), 121-140.
- Eric Weisstein's World of Mathematics, Weakly Binary Tree.
- Eric Weisstein's World of Mathematics, Strongly Binary Tree.
- Wikipedia, Wedderburn-Etherington numbers.
- Index entries for "core" sequences
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
- Index entries for sequences related to parenthesizing
-
A001190 := proc(n) option remember; local s,k; if n<=1 then RETURN(n); elif n <=3 then RETURN(1); else s := 0; if n mod 2 = 0 then s := A001190(n/2)*(A001190(n/2)+1)/2; for k from 1 to n/2-1 do s := s+A001190(k)*A001190(n-k); od; RETURN(s); else for k from 1 to (n-1)/2 do s := s+A001190(k)*A001190(n-k); od; RETURN(s); fi; fi; end;
N := 40: G001190 := add(A001190(n)*x^n,n=0..N);
spec := [S,{S=Union(Z,Prod(Z,Set(S,card=2)))},unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
# alternative Maple program:
a:= proc(n) option remember; `if`(n<2, n, `if`(n::odd, 0,
(t-> t*(1-t)/2)(a(n/2)))+add(a(i)*a(n-i), i=1..n/2))
end:
seq(a(n), n=0..40); # Alois P. Heinz, Aug 28 2017
-
terms = 35; A[] = 0; Do[A[x] = x + (1/2)*(A[x]^2 + A[x^2]) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Jean-François Alcover, Jul 22 2011, updated Jan 10 2018 *)
a[n_?OddQ] := a[n] = Sum[a[k]*a[n-k], {k, 1, (n-1)/2}]; a[n_?EvenQ] := a[n] = Sum[a[k]*a[n-k], {k, 1, n/2-1}] + (1/2)*a[n/2]*(1+a[n/2]); a[0]=0; a[1]=1; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Jun 13 2012, after recurrence formula *)
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Nest[ 1 - Sqrt[1 - 2 x - (# /. x -> x^2)] &, 0, BitLength @ n], {x, 0, n}]]; (* Michael Somos, Apr 25 2013 *)
-
{a(n) = local(A, m); if( n<0, 0, m=1; A = O(x); while( m<=n, m*=2; A = 1 - sqrt(1 - 2*x - subst(A, x, x^2))); polcoeff(A, n))}; /* Michael Somos, Sep 06 2003 */
-
{a(n) = local(A); if( n<4, n>0, A = vector(n, i, 1); for( i=4, n, A[i] = sum( j=1, (i-1)\2, A[j] * A[i-j]) + if( i%2, 0, A[i/2] * (A[i/2] + 1)/2)); A[n])}; /* Michael Somos, Mar 25 2006 */
-
from functools import lru_cache
@lru_cache(maxsize=None)
def A001190(n):
if n <= 1: return n
m = n//2 + n % 2
return sum(A001190(i+1)*A001190(n-1-i) for i in range(m-1)) + (1 - n % 2)*A001190(m)*(A001190(m)+1)//2 # Chai Wah Wu, Jan 14 2022
A001699
Number of binary trees of height n; or products (ways to insert parentheses) of height n when multiplication is non-commutative and non-associative.
Original entry on oeis.org
1, 1, 3, 21, 651, 457653, 210065930571, 44127887745696109598901, 1947270476915296449559659317606103024276803403, 3791862310265926082868235028027893277370233150300118107846437701158064808916492244872560821
Offset: 0
G.f. = 1 + x + 3*x^2 + 21*x^3 + 651*x^4 + 457653*x^5 + ... - _Michael Somos_, Jun 02 2019
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 307.
- I. M. H. Etherington, On non-associative combinations, Proc. Royal Soc. Edinburgh, 59 (Part 2, 1938-39), 153-162.
- I. M. H. Etherington, Some problems of non-associative combinations (I), Edinburgh Math. Notes, 32 (1940), pp. i-vi. Part II is by A. Erdelyi and I. M. H. Etherington, and is on pages vii-xiv of the same issue.
- T. K. Moon, Enumerations of binary trees, types of trees and the number of reversible variable length codes, submitted to Discrete Applied Mathematics, 2000.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- David Wasserman, Table of n, a(n) for n = 0..12 [Shortened file because terms grow rapidly: see Wasserman link below for an additional term]
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- Mayfawny Bergmann, Efficiency of Lossless Compression of a Binary Tree via its Minimal Directed Acyclic Graph Representation. Rose-Hulman Undergraduate Mathematics Journal: Vol. 15 : Iss. 2, Article 1. (2014).
- Henry Bottomley, Illustration of initial terms
- I. M. H. Etherington, Non-associate powers and a functional equation, Math. Gaz. 21 (1937), 36-39; addendum 21 (1937), 153.
- I. M. H. Etherington, On non-associative combinations, Proc. Royal Soc. Edinburgh, 59 (Part 2, 1938-39), 153-162. [Annotated scanned copy]
- Samuele Giraudo, The combinator M and the Mockingbird lattice, arXiv:2204.03586 [math.CO], 2022.
- Claude Lenormand, Arbres et permutations II, see p. 6
- David E. Narváez, Proof of polynomial recursive equation of order 2, Jun 05 2025.
- David Wasserman, Table of n, a(n) for n = 0..13
- Eric Weisstein's World of Mathematics, Binary Tree
- Index entries for "core" sequences
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
- Index entries for sequences related to parenthesizing
- Index entries for sequences of form a(n+1)=a(n)^2 + ...
-
s := proc(n) local i,j,ans; ans := [ 1 ]; for i to n do ans := [ op(ans),2*(add(j,j=ans)-ans[ i ])*ans[ i ]+ans[ i ]^2 ] od; RETURN(ans); end; s(10);
-
a[0] = 1; a[n_] := a[n] = 2*a[n-1]*Sum[a[k], {k, 0, n-2}] + a[n-1]^2; Table[a[n], {n, 0, 9}] (* Jean-François Alcover, May 16 2012 *)
a[ n_] := If[ n < 2, Boole[n >= 0], With[{u = a[n - 1], v = a[n - 2]}, u (u + v + u/v)]]; (* Michael Somos, Jun 02 2019 *)
-
{a(n) = if( n<=1, n>=0, a(n-1) * (a(n-1) + a(n-2) + a(n-1) / a(n-2)))}; /* Michael Somos, 2000 */
-
from functools import lru_cache
@lru_cache(maxsize=None)
def a(n): return 1 if n <= 1 else a(n-1) * (a(n-1) + a(n-2) + a(n-1)//a(n-2))
print([a(n) for n in range(10)]) # Michael S. Branicky, Nov 10 2022 after Michael Somos
A006894
Number of planted 3-trees of height < n.
Original entry on oeis.org
1, 2, 4, 11, 67, 2279, 2598061, 3374961778892, 5695183504492614029263279, 16217557574922386301420536972254869595782763547561, 131504586847961235687181874578063117114329409897615188504091716162522225834932122128288032336298142
Offset: 1
x + 2*x^2 + 4*x^3 + 11*x^4 + 67*x^5 + 2279*x^6 + 2598061*x^7 + 3374961778892*x^8 + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- David Wasserman, Table of n, a(n) for n = 1..14
- Luc Devroye, Michael R. Doboli, Noah A. Rosenberg, and Stephan Wagner, Tree height and the asymptotic mean of the Colijn-Plazzotta rank of unlabeled binary rooted trees, arXiv:2409.18956 [math.CO], 2024. See p. 5.
- F. Harary et al., Counting free binary trees admitting a given height, J. Combin. Inform. System Sci. 17 (1992), no. 1-2, 175--181. MR1216977 (94c:05039)
- Harary, Frank; Palmer, Edgar M.; Robinson, Robert W., Counting free binary trees admitting a given height, J. Combin. Inform. System Sci. 17 (1992), no. 1-2, 175-181. (Annotated scanned copy)
- E. Lemoine, Note sur deux nouvelles décompositions des nombres entiers, Assoc. française pour l'avancement des sciences. Vol. 29, Tome 2, pp. 72-74, 1900.
- Sergey Zimnitskiy, Illustration of initial terms of A006894 and A002658
- Index entries for "core" sequences
- Index entries for sequences related to rooted trees
-
A006894 := proc(n) option remember; if n=1 then 1 else A006894(n-1)*(A006894(n-1)+1)/2+1 fi end; [ seq(A006894(i),i=1..11) ];
a[ -1]:=0:a[0]:=1:for n from 1 to 50 do a[n]:=binomial(a[n-1]+2,2) od: seq(a[n]+1, n=-1..9); # Zerinvary Lajos, Jun 08 2007
a[1]:=1:for n from 2 to 10 do a[n]:=a[n-1]*(a[n-1]+1)/2+1 od: seq(a[n],n=1..10); # Miklos Kristof, Dec 11 2007
-
NestList[(#(#+1))/2+1&,1,12] (* Harvey P. Dale, May 24 2011 *)
-
v=vector(15);v[1]=1;for(i=2,#v,v[i]=binomial(v[i-1]+1,2)+1);v \\ Charles R Greathouse IV, Feb 11 2011
-
{a(n) = if( n<1, 0, 1 + binomial( 1 + a(n-1), 2))} /* Michael Somos, Jan 01 2013 */
-
from functools import lru_cache
@lru_cache(maxsize=None)
def A006894(n): return ((m:=A006894(n-1))*(m+1)>>1)+1 if n else 0 # Chai Wah Wu, Feb 20 2023
A001697
a(n+1) = a(n)(a(0) + ... + a(n)).
Original entry on oeis.org
1, 1, 2, 8, 96, 10368, 108615168, 11798392572168192, 139202068568601556987554268864512, 19377215893777651167043206536157390321290709180447278572301746176
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- John Cerkan, Table of n, a(n) for n = 0..12
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- Daniel Duverney, Takeshi Kurosawa, Iekata Shiokawa, Transformation formulas of finite sums into continued fractions, arXiv:1912.12565 [math.NT], 2019.
- Index entries for sequences of form a(n+1)=a(n)^2 + ...
- Index to divisibility sequences
a(n) =
A039941(2*n+1); first differences of
A001696 give this sequence.
-
a001697 n = a001697_list !! n
a001697_list = 1 : 1 : f [1,1] where
f xs@(x:_) = y : f (y : xs) where y = x * sum xs
-- Reinhard Zumkeller, Apr 29 2013
-
[n le 2 select 1 else Self(n-1)^2*(1+1/Self(n-2)): n in [1..12]]; // Vincenzo Librandi, Nov 25 2015
-
a[0] = 1; a[1] = 1; a[n_] := a[n] = a[n - 1]^2*(1 + 1/a[n - 2]); Table[a[n], {n, 0, 9}] (* Jean-François Alcover, Jul 02 2013 *)
nxt[{t_,a_}]:={t+t*a,t*a}; Transpose[NestList[nxt,{1,1},10]][[2]] (* Harvey P. Dale, Jan 24 2016 *)
-
a(n)=if(n<2,n >= 0,a(n-1)^2*(1+1/a(n-2)))
A005588
Number of free binary trees admitting height n.
Original entry on oeis.org
2, 7, 52, 2133, 2590407, 3374951541062, 5695183504479116640376509, 16217557574922386301420514191523784895639577710480, 131504586847961235687181874578063117114329409897550318273792033024340388219235081096658023517076950
Offset: 1
+---------+
| o o o | a(1) = 2
| | \| |
| o o |
+---------------------------------------------+
| o o o o o o o o o o o o o o o | a(2) = 7
| | \| | \| | | | \| \| |/ |
| o o o o o o o o o o o o |
| | | \| \| \| \ / \| |
| o o o o o o o |
+---------------------------------------------+
a(3) = 52 while A002658(4) = 56 because there are 56 - 52 = 4 free binary trees admitting height 3 which have two rootings, while the rest have only one rooting. The four trees have degree sequences 32111, 322111, 3222111, 3321111. - _Michael Somos_, Sep 02 2012
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- David Wassermann, Table of n, a(n) for n = 1..12
- Harary, Frank; Palmer, Edgar M.; Robinson, Robert W., Counting free binary trees admitting a given height, J. Combin. Inform. System Sci. 17 (1992), no. 1-2, 175--181. MR1216977 (94c:05039)
- Harary, Frank; Palmer, Edgar M.; Robinson, Robert W., Counting free binary trees admitting a given height, J. Combin. Inform. System Sci. 17 (1992), no. 1-2, 175-181. (Annotated scanned copy)
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
- Index entries for "core" sequences
-
bin2[n_] = Binomial[n, 2];
bin3[n_] = Binomial[n, 3];
p[0] = q[0] = 0;
p[1] = q[1] = 1;
q[h1_] := q[h1] = With[{h = h1-1}, q[h] + p[h]];
p[h1_] := p[h1] = With[{h = h1-1}, bin2[1 + p[h]] + p[h] q[h]];
a[h_] := a[h] = bin3[2 + p[h]] + bin2[1 + p[h]] q[h];
b[h_] := b[h] = bin2[1 + p[h]];
e[h_, i_] := e[h, i] = 1 + Sum[d[j, i], {j, h-1}];
d[h_, h_] := 0; d[h_, i_] := p[h] /; i > h;
d[h1_, i1_] := d[h1, i1] = With[{h = h1-1, i = i1-1}, bin2[1 + d[h, i]] + d[h, i] e[h, i]]; d[h_, 1] := d[h, 1] = p[h] - p[h-1];
e[h_, 1] := e[h, 1] = p[h-1];
t1[h_] := Sum[a[h-i] - bin3[2 + d[h-i, i]] - bin2[1 + d[h-i, i]] e[h-i, i], {i, Quotient[h, 2]}];
t2[h_] := Sum[b[h-i+1] - bin2[1 + d[h-i+1, i]], {i, Quotient[h+1, 2]}];
t[h_] := bin2[1 + p[h]] + t1[h] + t2[h];
Table[t[n], {n, 1, 12}] (* Jean-François Alcover, Apr 22 2013, program corrected and improved by Michael Somos *)
A108225
a(0) = 0, a(1) = 2; for n >= 2, a(n) = (a(n-1) + a(n-2))*(a(n-1) - a(n-2) + 1)/2.
Original entry on oeis.org
0, 2, 3, 5, 12, 68, 2280, 2598062, 3374961778893, 5695183504492614029263280, 16217557574922386301420536972254869595782763547562
Offset: 0
- Robert Israel, Table of n, a(n) for n = 0..14
- C. Colijn and G. Plazzotta, A metric on phylogenetic tree shapes, Syst. Biol., 67 (2018), 113-126.
- Luc Devroye, Michael R. Doboli, Noah A. Rosenberg, and Stephan Wagner, Tree height and the asymptotic mean of the Colijn-Plazzotta rank of unlabeled binary rooted trees, arXiv:2409.18956 [math.CO], 2024. See p. 3.
- N. A. Rosenberg, On the Colijn-Plazzotta numbering scheme for unlabeled binary rooted trees, Discr. Appl. Math., 291 (2021), 88-98.
- J.S. Seneschal, Iteration of Semi-Complete Graphs
-
F:=proc(n) option remember; if n <= 1 then RETURN(2*n) fi; (F(n-1)+F(n-2))*(F(n-1)-F(n-2)+1)/2; end;
a[ -2]:=-2:a[ -1]:=0:a[0]:=1:for n from 1 to 50 do a[n]:=binomial(a[n-1]+2,2) od: seq(a[n]+2, n=-2..8); # Zerinvary Lajos, Jun 08 2007
-
RecurrenceTable[{a[0]==0,a[1]==2,a[n]==(a[n-1]+a[n-2])(a[n-1]- a[n-2]+1)/2},a[n],{n,15}] (* Harvey P. Dale, Jun 09 2011 *)
A067338
Divide the natural numbers in sets of consecutive numbers, starting with {1,2}, each set with number of elements equal to the sum of elements of the preceding set. The number of elements in the n-th set gives a(n).
Original entry on oeis.org
2, 3, 12, 138, 11937, 73102188, 2672848933402062, 3572060905817696883164853272313, 6379809557435582128907282471156933713351634534272773703460187
Offset: 1
-
I:=[2,3]; [n le 2 select I[n] else Self(n-1)*(2*Self(n-1) + Self(n-2)*Self(n-1) + Self(n-2)^2)/(2*Self(n-2)): n in [1..10]]; // Vincenzo Librandi, Jan 23 2015
-
# Return [start,number,sum] of n-th group
A067338aux := proc(n)
local StrNumSu,Strt,Num,Su ;
option remember;
if n = 1 then
return [1,2,3] ;
else
strNumSu := procname(n-1) ;
Strt := strNumSu[1]+strNumSu[2] ;
Num := strNumSu[3] ;
Su := Num*(Num+2*Strt-1)/2 ;
return [Strt,Num,Su] ;
end if;
end proc:
A067338 := proc(n)
A067338aux(n)[2] ;
end proc:
seq(A067338(n),n=1..10) ; # R. J. Mathar, Jan 21 2015
-
RecurrenceTable[{a[n] == a[n-1]*(2*a[n-1] + a[n-2]*a[n-1] + a[n-2]^2)/(2*a[n-2]), a[1]==2, a[2]==3}, a, {n, 1, 10}] (* Vaclav Kotesovec, Dec 09 2015 *)
-
print1(a=n=2);for(i=2,9,print1(","n=n*(a+a-n+1)/2);a+=n) \\ M. F. Hasler, Jan 21 2015
A067339
Divide the natural numbers in sets of consecutive numbers, starting with {1,2}, each set with number of elements equal to the sum of elements of the preceding set. The final element of the n-th set gives a(n).
Original entry on oeis.org
2, 5, 17, 155, 12092, 73114280, 2672849006516342, 3572060905817699556013859788655, 6379809557435582128907282471160505774257452233828787563248842
Offset: 1
-
RecurrenceTable[{a[n] == a[n-1]*(a[n-1]+1)/2 + 2, a[1]==2}, a, {n, 1, 10}] (* Vaclav Kotesovec, Dec 09 2015 *)
NestList[(#(#+1))/2+2&,2,10] (* Harvey P. Dale, Jun 17 2017 *)
-
a(n) = if(n>1,a(n-1)*(a(n-1)+1)/2)+2 \\ Edited by M. F. Hasler, Jan 23 2015
-
vector(10,i,if(i>1,n=n*(a+a-n+1)/2;a+=n,n=a=2)) \\ M. F. Hasler, Jan 23 2015
A103410
Number of products of distinct elements in generation n, starting with two elements.
Original entry on oeis.org
2, 1, 2, 7, 56, 2212, 2595782, 3374959180831, 5695183504489239067484387, 16217557574922386301420531277071365103168734284282, 131504586847961235687181874578063117114329409897598970946516793776220805297959867258692249572750581
Offset: 0
The word "product" means a binary operation * . For example, using * = average, given by a*b=(a+b)/2, generation G(0) consisting of 0 and 1 yields successive generations:
G(1): 0*1=1/2, whence a(1)=1
G(2): 1/4=0*(1/2), 3/4=1*(1/2), whence a(2)=2
G(3): 1/8=0*(1/4), 5/8=1*(1/4), 3/8=(1/2)*(1/4), 3/8=0*(3/4),
7/8=1*(3/4), 5/8=(1/2)*(3/4), 1/2=(1/4)*(3/4), whence a(3)=7.
To summarize, for n>=3, G(n) consists of a(n-1)*(a(0)+a(1)+...+a(n-2)) products a*b where a runs through G(0), G(1),...,G(n-2) and b runs through G(n-1), together with C(a(n-1),2) products a*b where a and b run through G(n-1).
-
print1("2,");a=2;s=0;for(n=1,12,aa=a*s+binomial(a,2);print1(aa",");s+=a;a=aa) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2008
One more term from Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2008
Original entry on oeis.org
2, 9, 61, 2194, 2592601, 3374954133663, 5695183504482491594510172, 16217557574922386301420519886707289378131172220652, 131504586847961235687181874578063117114329409897566535831366955410641808739121788386036154689297602
Offset: 1
a(9) = 2 + 7 + 52 + 2133 + 2590407 + 3374951541062 + 5695183504479116640376509 + 16217557574922386301420514191523784895639577710480 + 131504586847961235687181874578063117114329409897550318273792033024340388219235081096658023517076950.
Showing 1-10 of 10 results.
Comments