cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A001190 Wedderburn-Etherington numbers: unlabeled binary rooted trees (every node has outdegree 0 or 2) with n endpoints (and 2n-1 nodes in all).

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 6, 11, 23, 46, 98, 207, 451, 983, 2179, 4850, 10905, 24631, 56011, 127912, 293547, 676157, 1563372, 3626149, 8436379, 19680277, 46026618, 107890609, 253450711, 596572387, 1406818759, 3323236238, 7862958391, 18632325319, 44214569100, 105061603969
Offset: 0

Views

Author

Keywords

Comments

Also number of n-node binary rooted trees (every node has outdegree <= 2) where root has degree 0 (only for n=1) or 1.
a(n+1) is the number of rooted trees with n nodes where the outdegree of every node is <= 2, see example. These trees are obtained by removing the root of the trees in the comment above. - Joerg Arndt, Jun 29 2014
Number of interpretations of x^n (or number of ways to insert parentheses) when multiplication is commutative but not associative. E.g., a(4) = 2: x(x*x^2) and x^2*x^2. a(5) = 3: (x*x^2)x^2, x(x*x*x^2) and x(x^2*x^2). [If multiplication is non-commutative then the answer is A000108(n-1). - Jianing Song, Apr 29 2022]
Number of ways to place n stars in a single bound stable hierarchical multiple star system; i.e., taking only the configurations from A003214 where all stars are included in single outer parentheses. - Piet Hut, Nov 07 2003
Number of colorations of Kn (complete graph of order n) with n-1 colors such that no triangle is three-colored. Two edge-colorations C1 and C2 of G are isomorphic iff exists an automorphism f (isomorphism between G an G) such that: f sends same-colored edges of C1 on same-colored edges of C2 and f^(-1) sends same-colored edges of C2 on same-colored edges of C1. - Abraham Gutiérrez, Nov 12 2012
For n>1, a(n) is the number of (not necessarily distinct) unordered pairs of free unlabeled trees having a total of n nodes. See the first entry in formula section. - Geoffrey Critzer, Nov 09 2014
Named after the English mathematician Ivor Etherington (1908-1994) and the Scottish mathematician Joseph Wedderburn (1882-1948). - Amiram Eldar, May 29 2021

Examples

			G.f. = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 11*x^7 + 23*x^8 + 46*x^9 + 98*x^10 + ...
From _Joerg Arndt_, Jun 29 2014: (Start)
The a(6+1) = 11 rooted trees with 6 nodes as described in the comment are:
:           level sequence       outdegrees (dots for zeros)
:     1:  [ 0 1 2 3 4 5 ]    [ 1 1 1 1 1 . ]
:  O--o--o--o--o--o
:
:     2:  [ 0 1 2 3 4 4 ]    [ 1 1 1 2 . . ]
:  O--o--o--o--o
:           .--o
:
:     3:  [ 0 1 2 3 4 3 ]    [ 1 1 2 1 . . ]
:  O--o--o--o--o
:        .--o
:
:     4:  [ 0 1 2 3 4 2 ]    [ 1 2 1 1 . . ]
:  O--o--o--o--o
:     .--o
:
:     5:  [ 0 1 2 3 4 1 ]    [ 2 1 1 1 . . ]
:  O--o--o--o--o
:  .--o
:
:     6:  [ 0 1 2 3 3 2 ]    [ 1 2 2 . . . ]
:  O--o--o--o
:        .--o
:     .--o
:
:     7:  [ 0 1 2 3 3 1 ]    [ 2 1 2 . . . ]
:  O--o--o--o
:        .--o
:  .--o
:
:     8:  [ 0 1 2 3 2 3 ]    [ 1 2 1 . 1 . ]
:  O--o--o--o
:     .--o--o
:
:     9:  [ 0 1 2 3 2 1 ]    [ 2 2 1 . . . ]
:  O--o--o--o
:     .--o
:  .--o
:
:    10:  [ 0 1 2 3 1 2 ]    [ 2 1 1 . 1 . ]
:  O--o--o--o
:  .--o--o
:
:    11:  [ 0 1 2 2 1 2 ]    [ 2 2 . . 1 . ]
:  O--o--o
:     .--o
:  .--o--o
:
(End)
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 307.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 55.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 295-316.
  • A. Gutiérrez-Sánchez, Shen-colored tournaments, thesis, UNAM, 2012.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.52.
  • Richard P. Stanley, Catalan Numbers, Cambridge, 2015, p. 133.

Crossrefs

Column k=2 of A292085 and of A299038.
Column k=1 of A319539 and of A319541.

Programs

  • Maple
    A001190 := proc(n) option remember; local s,k; if n<=1 then RETURN(n); elif n <=3 then RETURN(1); else s := 0; if n mod 2 = 0 then s := A001190(n/2)*(A001190(n/2)+1)/2; for k from 1 to n/2-1 do s := s+A001190(k)*A001190(n-k); od; RETURN(s); else for k from 1 to (n-1)/2 do s := s+A001190(k)*A001190(n-k); od; RETURN(s); fi; fi; end;
    N := 40: G001190 := add(A001190(n)*x^n,n=0..N);
    spec := [S,{S=Union(Z,Prod(Z,Set(S,card=2)))},unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
    # alternative Maple program:
    a:= proc(n) option remember; `if`(n<2, n, `if`(n::odd, 0,
          (t-> t*(1-t)/2)(a(n/2)))+add(a(i)*a(n-i), i=1..n/2))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Aug 28 2017
  • Mathematica
    terms = 35; A[] = 0; Do[A[x] = x + (1/2)*(A[x]^2 + A[x^2]) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Jean-François Alcover, Jul 22 2011, updated Jan 10 2018 *)
    a[n_?OddQ] := a[n] = Sum[a[k]*a[n-k], {k, 1, (n-1)/2}]; a[n_?EvenQ] := a[n] = Sum[a[k]*a[n-k], {k, 1, n/2-1}] + (1/2)*a[n/2]*(1+a[n/2]); a[0]=0; a[1]=1; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Jun 13 2012, after recurrence formula *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Nest[ 1 - Sqrt[1 - 2 x - (# /. x -> x^2)] &, 0, BitLength @ n], {x, 0, n}]]; (* Michael Somos, Apr 25 2013 *)
  • PARI
    {a(n) = local(A, m); if( n<0, 0, m=1; A = O(x); while( m<=n, m*=2; A = 1 - sqrt(1 - 2*x - subst(A, x, x^2))); polcoeff(A, n))}; /* Michael Somos, Sep 06 2003 */
    
  • PARI
    {a(n) = local(A); if( n<4, n>0, A = vector(n, i, 1); for( i=4, n, A[i] = sum( j=1, (i-1)\2, A[j] * A[i-j]) + if( i%2, 0, A[i/2] * (A[i/2] + 1)/2)); A[n])}; /* Michael Somos, Mar 25 2006 */
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A001190(n):
        if n <= 1: return n
        m = n//2 + n % 2
        return sum(A001190(i+1)*A001190(n-1-i) for i in range(m-1)) + (1 - n % 2)*A001190(m)*(A001190(m)+1)//2 # Chai Wah Wu, Jan 14 2022

Formula

G.f. satisfies A(x) = x + (1/2)*(A(x)^2 + A(x^2)) [de Bruijn and Klarner].
G.f. also satisfies A(x) = 1 - sqrt(1 - 2*x - A(x^2)). - Michael Somos, Sep 06 2003
a(2n-1) = a(1)a(2n-2) + a(2)a(2n-3) + ... + a(n-1)a(n), a(2n) = a(1)a(2n-1) + a(2)a(2n-2) + ... + a(n-1)a(n+1) + a(n)(a(n)+1)/2.
Given g.f. A(x), then B(x) = -1 + A(x) satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = (u^2 + v)^2 + 2*(v^2 + w). - Michael Somos, Oct 22 2006
The radius of convergence of the g.f. is A240943 = 1/A086317 ~ 0.4026975... - Jean-François Alcover, Jul 28 2014, after Steven R. Finch.
a(n) ~ A086318 * A086317^(n-1) / n^(3/2). - Vaclav Kotesovec, Apr 19 2016

A001699 Number of binary trees of height n; or products (ways to insert parentheses) of height n when multiplication is non-commutative and non-associative.

Original entry on oeis.org

1, 1, 3, 21, 651, 457653, 210065930571, 44127887745696109598901, 1947270476915296449559659317606103024276803403, 3791862310265926082868235028027893277370233150300118107846437701158064808916492244872560821
Offset: 0

Views

Author

Keywords

Comments

Approaches 1.5028368...^(2^n), see A077496. Row sums of A065329 as square array. - Henry Bottomley, Oct 29 2001. Also row sum of square array A073345 (AK).

Examples

			G.f. = 1 + x + 3*x^2 + 21*x^3 + 651*x^4 + 457653*x^5 + ... - _Michael Somos_, Jun 02 2019
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 307.
  • I. M. H. Etherington, On non-associative combinations, Proc. Royal Soc. Edinburgh, 59 (Part 2, 1938-39), 153-162.
  • I. M. H. Etherington, Some problems of non-associative combinations (I), Edinburgh Math. Notes, 32 (1940), pp. i-vi. Part II is by A. Erdelyi and I. M. H. Etherington, and is on pages vii-xiv of the same issue.
  • T. K. Moon, Enumerations of binary trees, types of trees and the number of reversible variable length codes, submitted to Discrete Applied Mathematics, 2000.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

Crossrefs

Row sums of A065329.
Column sums of A335919, A335920.

Programs

  • Maple
    s := proc(n) local i,j,ans; ans := [ 1 ]; for i to n do ans := [ op(ans),2*(add(j,j=ans)-ans[ i ])*ans[ i ]+ans[ i ]^2 ] od; RETURN(ans); end; s(10);
  • Mathematica
    a[0] = 1; a[n_] := a[n] = 2*a[n-1]*Sum[a[k], {k, 0, n-2}] + a[n-1]^2; Table[a[n], {n, 0, 9}] (* Jean-François Alcover, May 16 2012 *)
    a[ n_] := If[ n < 2, Boole[n >= 0], With[{u = a[n - 1], v = a[n - 2]}, u (u + v + u/v)]]; (* Michael Somos, Jun 02 2019 *)
  • PARI
    {a(n) = if( n<=1, n>=0, a(n-1) * (a(n-1) + a(n-2) + a(n-1) / a(n-2)))}; /* Michael Somos, 2000 */
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def a(n): return 1 if n <= 1 else a(n-1) * (a(n-1) + a(n-2) + a(n-1)//a(n-2))
    print([a(n) for n in range(10)]) # Michael S. Branicky, Nov 10 2022 after Michael Somos

Formula

a(n+1) = 2*a(n)*(a(0) + ... + a(n-1)) + a(n)^2.
a(n+1) = a(n)^2 + a(n) + a(n)*sqrt(4*a(n)-3), if n > 0.
a(n) = A003095(n+1) - A003095(n) = A003095(n)^2 - A003095(n) + 1. - Henry Bottomley, Apr 26 2001; offset of LHS corrected by Anindya Bhattacharyya, Jun 21 2013
a(n) = A059826(A003095(n-1)).
From Peter Bala, Feb 03 2017: (Start)
a(n) = Product_{k = 1..n} A213437(k).
a(n) + a(n-1) = A213437(n+1) - A213437(n). (End)
a(n) = -a(n-2)^3 + a(n-1)^2 + 3*a(n-1)*a(n-2) + 2*a(n-2)^2 + 2*a(n-1) - 4*a(n-2) (see Narváez link for proof). - Boštjan Gec, Oct 10 2024

Extensions

Minor edits by Vaclav Kotesovec, Oct 04 2014

A006894 Number of planted 3-trees of height < n.

Original entry on oeis.org

1, 2, 4, 11, 67, 2279, 2598061, 3374961778892, 5695183504492614029263279, 16217557574922386301420536972254869595782763547561, 131504586847961235687181874578063117114329409897615188504091716162522225834932122128288032336298142
Offset: 1

Views

Author

Keywords

Comments

Representation requires n triangular numbers with greedy algorithm.
Comment from Marc LeBrun: Maximum possible number of distinct values after applying a commuting operation from 0 to N times to a single initial value.
Divide the natural numbers in sets of consecutive numbers, starting with {1}, each set with number of elements equal to the sum of elements of the preceding set. The greatest element of the n-th set gives a(n). The sets begin {1}, {2}, {3,4}, {5,6,7,8,9,10,11}, ... - Floor van Lamoen, Jan 16 2002
a(n+1) = (a(n))-th triangular number + 1 = A000217(a(n)) + 1. a(n) = A072638(n-1) + 1. - Jaroslav Krizek, Sep 11 2009
Sergey Zimnitskiy, May 08 2013, provided an illustration for A006894 and A002658 in terms of packing circles inside circles. The following description of the figure was supplied by Allan Wilks. Label a blank page "1" and draw a black circle labeled "2". Subsequent circles are labeled "3", "4", ... . In the black circle put two red circles (numbered "3" and "4"); two because the label of the black circle is "2". Then in each of the red circles put blue circles in number equal to the labels of the red circles. So these get labeled "5", ..., "11". Then in each of the blue circles, starting with circle "5", place a set of green (say) circles, equal in number to the label of the enclosing blue circle. When all of the green circles have been drawn, they will be labeled "12", ..., "67". If you take the maximum circle label at each colored level, you get 1,2,4,11,67,2279,..., which is A006894, which itself is the partial sums of A002658. The picture is a visualization of Floor van Lamoen's comment above.

Examples

			x + 2*x^2 + 4*x^3 + 11*x^4 + 67*x^5 + 2279*x^6 + 2598061*x^7 + 3374961778892*x^8 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A036602.

Programs

  • Maple
    A006894 := proc(n) option remember; if n=1 then 1 else A006894(n-1)*(A006894(n-1)+1)/2+1 fi end; [ seq(A006894(i),i=1..11) ];
    a[ -1]:=0:a[0]:=1:for n from 1 to 50 do a[n]:=binomial(a[n-1]+2,2) od: seq(a[n]+1, n=-1..9); # Zerinvary Lajos, Jun 08 2007
    a[1]:=1:for n from 2 to 10 do a[n]:=a[n-1]*(a[n-1]+1)/2+1 od: seq(a[n],n=1..10); # Miklos Kristof, Dec 11 2007
  • Mathematica
    NestList[(#(#+1))/2+1&,1,12] (* Harvey P. Dale, May 24 2011 *)
  • PARI
    v=vector(15);v[1]=1;for(i=2,#v,v[i]=binomial(v[i-1]+1,2)+1);v \\ Charles R Greathouse IV, Feb 11 2011
    
  • PARI
    {a(n) = if( n<1, 0, 1 + binomial( 1 + a(n-1), 2))} /* Michael Somos, Jan 01 2013 */
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A006894(n): return ((m:=A006894(n-1))*(m+1)>>1)+1 if n else 0 # Chai Wah Wu, Feb 20 2023

Formula

Partial sums of A002658; a(n+1) = a(n)(a(n)+1)/2 + 1 (from Marc LeBrun).
Sequence arises from a self-recursive process: a(1)=1, a(n)=a(n-1)*(a(n-1) + 1)/2 + 1. E.g., a(1)=1, a(2) = 1*2/2 + 1 = 2, a(3) = 2*3/2 + 1 = 4, a(4) = 4*5/2 + 1 = 11, a(5) = 11*12/2 + 1 = 67, ... - Miklos Kristof, Dec 11 2007
a(n) ~ 2 * c^(2^n), where c = 1.11625303268733048891316684155278646623772830100986583494311015252450055518... . - Vaclav Kotesovec, May 21 2015

A001697 a(n+1) = a(n)(a(0) + ... + a(n)).

Original entry on oeis.org

1, 1, 2, 8, 96, 10368, 108615168, 11798392572168192, 139202068568601556987554268864512, 19377215893777651167043206536157390321290709180447278572301746176
Offset: 0

Views

Author

Keywords

Comments

Number of binary trees of height n where for each node the left subtree is at least as high as the right subtree. - Franklin T. Adams-Watters, Feb 08 2007
The next term (a(10)) has 129 digits. - Harvey P. Dale, Jan 24 2016
Number of plane trees where the root has exactly n children and the i-th child of any node has at most i-1 children. - David Eppstein, Dec 18 2021

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A039941(2*n+1); first differences of A001696 give this sequence.
Cf. A064847.

Programs

  • Haskell
    a001697 n = a001697_list !! n
    a001697_list = 1 : 1 : f [1,1] where
       f xs@(x:_) = y : f (y : xs) where y = x * sum xs
    -- Reinhard Zumkeller, Apr 29 2013
    
  • Magma
    [n le 2 select 1 else Self(n-1)^2*(1+1/Self(n-2)): n in [1..12]]; // Vincenzo Librandi, Nov 25 2015
  • Mathematica
    a[0] = 1; a[1] = 1; a[n_] := a[n] = a[n - 1]^2*(1 + 1/a[n - 2]); Table[a[n], {n, 0, 9}]  (* Jean-François Alcover, Jul 02 2013 *)
    nxt[{t_,a_}]:={t+t*a,t*a}; Transpose[NestList[nxt,{1,1},10]][[2]] (* Harvey P. Dale, Jan 24 2016 *)
  • PARI
    a(n)=if(n<2,n >= 0,a(n-1)^2*(1+1/a(n-2)))
    

Formula

a(n) ~ c^(2^n), where c = 1.3352454783981919948826893254756974184778316104856161827213437094446034867599... . - Vaclav Kotesovec, May 21 2015

Extensions

Additional comments from Michael Somos, May 19 2000

A005588 Number of free binary trees admitting height n.

Original entry on oeis.org

2, 7, 52, 2133, 2590407, 3374951541062, 5695183504479116640376509, 16217557574922386301420514191523784895639577710480, 131504586847961235687181874578063117114329409897550318273792033024340388219235081096658023517076950
Offset: 1

Views

Author

N. J. A. Sloane; entry revised by N. J. A. Sloane, Aug 31 2012

Keywords

Comments

a(n) is the number of free 3-trees which have a rooting as a binary tree of height n.
a(n) <= A002658(n+1) [Harary, et al.] "This is because any tree with a binary rooting of height h corresponds to a planted 3-tree of height h+1. [...] In general there are trees with more than one binary rooting of height h, so equality does not hold". - Michael Somos, Sep 02 2012

Examples

			+---------+
| o   o o | a(1) = 2
| |    \| |
| o     o |
+---------------------------------------------+
| o   o o     o   o o   o o   o o o   o o o o | a(2) = 7
| |    \|     |    \|   | |   |  \|    \| |/  |
| o     o   o o   o o   o o   o   o     o o   |
| |     |    \|    \|    \|    \ /       \|   |
| o     o     o     o     o     o         o   |
+---------------------------------------------+
a(3) = 52 while A002658(4) = 56 because there are 56 - 52 = 4 free binary trees admitting height 3 which have two rootings, while the rest have only one rooting. The four trees have degree sequences 32111, 322111, 3222111, 3321111. - _Michael Somos_, Sep 02 2012
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    bin2[n_] = Binomial[n, 2];
    bin3[n_] = Binomial[n, 3];
    p[0] = q[0] = 0;
    p[1] = q[1] = 1;
    q[h1_] := q[h1] = With[{h = h1-1}, q[h] + p[h]];
    p[h1_] := p[h1] = With[{h = h1-1}, bin2[1 + p[h]] + p[h] q[h]];
    a[h_] := a[h] = bin3[2 + p[h]] + bin2[1 + p[h]] q[h];
    b[h_] := b[h] = bin2[1 + p[h]];
    e[h_, i_] := e[h, i] = 1 + Sum[d[j, i], {j, h-1}];
    d[h_, h_] := 0; d[h_, i_] := p[h] /; i > h;
    d[h1_, i1_] := d[h1, i1] = With[{h = h1-1, i = i1-1}, bin2[1 + d[h, i]] + d[h, i] e[h, i]]; d[h_, 1] := d[h, 1] = p[h] - p[h-1];
    e[h_, 1] := e[h, 1] = p[h-1];
    t1[h_] := Sum[a[h-i] - bin3[2 + d[h-i, i]] - bin2[1 + d[h-i, i]] e[h-i, i], {i, Quotient[h, 2]}];
    t2[h_] := Sum[b[h-i+1] - bin2[1 + d[h-i+1, i]], {i, Quotient[h+1, 2]}];
    t[h_] := bin2[1 + p[h]] + t1[h] + t2[h];
    Table[t[n], {n, 1, 12}] (* Jean-François Alcover, Apr 22 2013, program corrected and improved by Michael Somos *)

Formula

Harary et al. give a complicated recurrence.

A108225 a(0) = 0, a(1) = 2; for n >= 2, a(n) = (a(n-1) + a(n-2))*(a(n-1) - a(n-2) + 1)/2.

Original entry on oeis.org

0, 2, 3, 5, 12, 68, 2280, 2598062, 3374961778893, 5695183504492614029263280, 16217557574922386301420536972254869595782763547562
Offset: 0

Views

Author

N. J. A. Sloane, Jun 16 2005

Keywords

Comments

From a posting by Antreas P. Hatzipolakis to the Yahoo news group "Hyacinthos", circa Jun 10 2005.
The next term has 99 digits. - Harvey P. Dale, Jun 09 2011
a(n) for n>0 gives the rank of the unlabeled binary rooted tree, among those with n+1 leaves, that has the largest rank according to the bijection of Colijn and Plazzotta (2018) between unlabeled binary rooted trees and positive integers. - Noah A Rosenberg, Jun 03 2022

Crossrefs

First differences give A103410.
Cf. A006894.

Programs

  • Maple
    F:=proc(n) option remember; if n <= 1 then RETURN(2*n) fi; (F(n-1)+F(n-2))*(F(n-1)-F(n-2)+1)/2; end;
    a[ -2]:=-2:a[ -1]:=0:a[0]:=1:for n from 1 to 50 do a[n]:=binomial(a[n-1]+2,2) od: seq(a[n]+2, n=-2..8); # Zerinvary Lajos, Jun 08 2007
  • Mathematica
    RecurrenceTable[{a[0]==0,a[1]==2,a[n]==(a[n-1]+a[n-2])(a[n-1]- a[n-2]+1)/2},a[n],{n,15}] (* Harvey P. Dale, Jun 09 2011 *)

Formula

Conjecture: a(n) = A006894(n) + 1. - R. J. Mathar, Apr 23 2007
From J.S. Seneschal, Jul 17 2025 (Start)
a(n) = A000217(a(n)) - A072638(n) = A072638(n-1) + 2.
a(n) = A002658(n-1) + a(n-1) for n > 1. (End)

A067338 Divide the natural numbers in sets of consecutive numbers, starting with {1,2}, each set with number of elements equal to the sum of elements of the preceding set. The number of elements in the n-th set gives a(n).

Original entry on oeis.org

2, 3, 12, 138, 11937, 73102188, 2672848933402062, 3572060905817696883164853272313, 6379809557435582128907282471156933713351634534272773703460187
Offset: 1

Views

Author

Floor van Lamoen, Jan 16 2002

Keywords

Comments

The sets begin {1,2}, {3,4,5}, {6,7,8,...,17}, ...
Starting with {1}, one would get {1}, {2}, {3,4}, {5,6,7, 8,9,10, 11} ... with sums (1,2,7,56, 2212 ...) = A002658. - M. F. Hasler, Jan 21 2015

Crossrefs

Cf. A067339 (partial sums).

Programs

  • Magma
    I:=[2,3]; [n le 2 select I[n] else Self(n-1)*(2*Self(n-1) + Self(n-2)*Self(n-1) + Self(n-2)^2)/(2*Self(n-2)): n in [1..10]]; // Vincenzo Librandi, Jan 23 2015
  • Maple
    # Return [start,number,sum] of n-th group
    A067338aux := proc(n)
        local StrNumSu,Strt,Num,Su ;
        option remember;
        if n = 1 then
            return [1,2,3] ;
        else
            strNumSu := procname(n-1) ;
            Strt := strNumSu[1]+strNumSu[2] ;
            Num := strNumSu[3] ;
            Su := Num*(Num+2*Strt-1)/2 ;
            return [Strt,Num,Su] ;
        end if;
    end proc:
    A067338 := proc(n)
        A067338aux(n)[2] ;
    end proc:
    seq(A067338(n),n=1..10) ; # R. J. Mathar, Jan 21 2015
  • Mathematica
    RecurrenceTable[{a[n] == a[n-1]*(2*a[n-1] + a[n-2]*a[n-1] + a[n-2]^2)/(2*a[n-2]), a[1]==2, a[2]==3}, a, {n, 1, 10}] (* Vaclav Kotesovec, Dec 09 2015 *)
  • PARI
    print1(a=n=2);for(i=2,9,print1(","n=n*(a+a-n+1)/2);a+=n) \\ M. F. Hasler, Jan 21 2015
    

Formula

a(n)= a(n-1) *( 1 +2*[a(1)+a(2)+...+a(n-2)] +a(n-1) )/2. - Corrected by R. J. Mathar, Jan 22 2015
a(n) = a(n-1)*(2*a(n-1) + a(n-2)*a(n-1) + a(n-2)^2)/(2*a(n-2)). - David W. Wilson, Jan 22 2015
a(n+1) = a(n)*(2*A067339(n)-a(n)+1)/2. - M. F. Hasler, Jan 23 2015
a(n) ~ 2 * c^(2^n), where c = 1.312718001584962838462131787518361199185077166417566246117... . - Vaclav Kotesovec, Dec 09 2015

Extensions

Corrected and extended by Harvey P. Dale and M. F. Hasler, Jan 21 2015

A067339 Divide the natural numbers in sets of consecutive numbers, starting with {1,2}, each set with number of elements equal to the sum of elements of the preceding set. The final element of the n-th set gives a(n).

Original entry on oeis.org

2, 5, 17, 155, 12092, 73114280, 2672849006516342, 3572060905817699556013859788655, 6379809557435582128907282471160505774257452233828787563248842
Offset: 1

Views

Author

Floor van Lamoen, Jan 16 2002

Keywords

Comments

The sets begin {1, 2}, {3, 4, 5}, {6, 7, 8, ..., 17}, ...

Crossrefs

Cf. A006894, A002658. Partial sums of A067338.

Programs

  • Mathematica
    RecurrenceTable[{a[n] == a[n-1]*(a[n-1]+1)/2 + 2, a[1]==2}, a, {n, 1, 10}] (* Vaclav Kotesovec, Dec 09 2015 *)
    NestList[(#(#+1))/2+2&,2,10] (* Harvey P. Dale, Jun 17 2017 *)
  • PARI
    a(n) = if(n>1,a(n-1)*(a(n-1)+1)/2)+2 \\ Edited by M. F. Hasler, Jan 23 2015
    
  • PARI
    vector(10,i,if(i>1,n=n*(a+a-n+1)/2;a+=n,n=a=2)) \\ M. F. Hasler, Jan 23 2015

Formula

a(n)=a(n-1)*(a(n-1)+1)/2 + 2
a(n)=a(n-1)+A067338(n). - M. F. Hasler, Jan 23 2015
a(n) ~ 2 * c^(2^n), where c = 1.312718001584962838462131787518361199185077166417566246117... . - Vaclav Kotesovec, Dec 09 2015

Extensions

More terms from Jason Earls, Jan 16 2002

A103410 Number of products of distinct elements in generation n, starting with two elements.

Original entry on oeis.org

2, 1, 2, 7, 56, 2212, 2595782, 3374959180831, 5695183504489239067484387, 16217557574922386301420531277071365103168734284282, 131504586847961235687181874578063117114329409897598970946516793776220805297959867258692249572750581
Offset: 0

Views

Author

Clark Kimberling, Feb 04 2005

Keywords

Comments

The binary operation must be commutative, idempotent and non-associative. - David Wasserman, Apr 15 2008

Examples

			The word "product" means a binary operation * . For example, using * = average, given by a*b=(a+b)/2, generation G(0) consisting of 0 and 1 yields successive generations:
G(1): 0*1=1/2, whence a(1)=1
G(2): 1/4=0*(1/2), 3/4=1*(1/2), whence a(2)=2
G(3): 1/8=0*(1/4), 5/8=1*(1/4), 3/8=(1/2)*(1/4), 3/8=0*(3/4),
7/8=1*(3/4), 5/8=(1/2)*(3/4), 1/2=(1/4)*(3/4), whence a(3)=7.
To summarize, for n>=3, G(n) consists of a(n-1)*(a(0)+a(1)+...+a(n-2)) products a*b where a runs through G(0), G(1),...,G(n-2) and b runs through G(n-1), together with C(a(n-1),2) products a*b where a and b run through G(n-1).
		

Crossrefs

The same as A002658 for n >= 1.

Programs

  • PARI
    print1("2,");a=2;s=0;for(n=1,12,aa=a*s+binomial(a,2);print1(aa",");s+=a;a=aa) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2008

Formula

a(n)=a(n-1)(a(0)+a(1)+...+a(n-2))+C(a(n-1), 2).

Extensions

One more term from David Wasserman, Apr 15 2008
One more term from Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2008

A173498 Partial sums of A005588.

Original entry on oeis.org

2, 9, 61, 2194, 2592601, 3374954133663, 5695183504482491594510172, 16217557574922386301420519886707289378131172220652, 131504586847961235687181874578063117114329409897566535831366955410641808739121788386036154689297602
Offset: 1

Views

Author

Jonathan Vos Post, Feb 19 2010

Keywords

Comments

Partial sums of number of free binary rooted trees of height n. The subsequence of primes in this partial sum begins: 2, 61, no more through a(12).

Examples

			a(9) = 2 + 7 + 52 + 2133 + 2590407 + 3374951541062 + 5695183504479116640376509 + 16217557574922386301420514191523784895639577710480 + 131504586847961235687181874578063117114329409897550318273792033024340388219235081096658023517076950.
		

Crossrefs

Formula

a(n) = Sum_{i=1..n} A005588(i).
Showing 1-10 of 10 results.