cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A109070 Number of digits in numbers appearing in A108225.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 7, 13, 25, 50, 99, 196, 392, 783, 1566, 3131, 6261, 12521, 25042, 50084, 100166, 200332, 400663, 801325, 1602649, 3205298, 6410595, 12821190, 25642379, 51284758
Offset: 0

Views

Author

Zak Seidov, Jun 18 2005

Keywords

Comments

Starting with a(14)=783, a(n) = 2*a(n-1) - (1 or 0).

Examples

			A109070(10)=50 because A108225(10)=16217557574922386301420536972254869595782763547562 has 50 digits.
		

Crossrefs

Cf. A108225.

Programs

  • Mathematica
    nxt[{a_,b_}]:={b,((a+b)(b-a+1))/2}; Join[{1},IntegerLength/@ Transpose[ NestList[nxt,{0,2},31]][[2]]] (* Harvey P. Dale, Feb 14 2012 *)

A007501 a(0) = 2; for n >= 0, a(n+1) = a(n)*(a(n)+1)/2.

Original entry on oeis.org

2, 3, 6, 21, 231, 26796, 359026206, 64449908476890321, 2076895351339769460477611370186681, 2156747150208372213435450937462082366919951682912789656986079991221
Offset: 0

Views

Author

Keywords

Comments

Number of nonisomorphic complete binary trees with leaves colored using two colors. - Brendan McKay, Feb 01 2001
With a(0) = 2, a(n+1) is the number of possible distinct sums between any number of elements in {1,...,a(n)}. - Derek Orr, Dec 13 2014

Examples

			Example for depth 2 (the nonisomorphic possibilities are AAAA, AAAB, AABB, ABAB, ABBB, BBBB):
         o
        / \
       /   \
      o     o
     / \   / \
    /   \ /   \
    A   B B   B
		

References

  • W. H. Cutler, Subdividing a Box into Completely Incongruent Boxes, J. Rec. Math., 12 (1979), 104-111.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A117872 (parity), A275342 (2-adic valuation).
Cf. A129440.
Cf. A013589 (start=4), A050542 (start=5), A050548 (start=7), A050536 (start=8), A050909 (start=9).

Programs

  • Haskell
    a007501 n = a007501_list !! n
    a007501_list = iterate a000217 2  -- Reinhard Zumkeller, Aug 15 2013
  • Mathematica
    f[n_Integer] := n(n + 1)/2; NestList[f, 2, 10]
  • PARI
    a(n)=if(n<1,2,a(n-1)*(1+a(n-1))/2)
    

Formula

a(n) = A006893(n+1) + 1.
a(n+1) = A000217(a(n)). - Reinhard Zumkeller, Aug 15 2013
a(n) ~ 2 * c^(2^n), where c = 1.34576817070125852633753712522207761954658547520962441996... . - Vaclav Kotesovec, Dec 17 2014
a(n) = A145272(n) + a(n-1). - J.S. Seneschal, Jul 17 2025

A354970 Smallest value of the Colijn-Plazzotta rank among n-leaved unlabeled binary rooted trees.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 10, 11, 20, 22, 28, 29, 53, 56, 66, 67, 202, 211, 252, 254, 401, 407, 435, 436, 1408, 1432, 1594, 1597, 2202, 2212, 2278, 2279, 20369, 20504, 22358, 22367, 31838, 31879, 32384, 32386, 80455, 80602, 83023, 83029, 94803, 94831, 95266, 95267
Offset: 1

Views

Author

Noah A Rosenberg, Jun 14 2022

Keywords

Comments

a(n) gives the rank of the unlabeled binary rooted tree, among those with n leaves, that has the smallest rank according to the bijection of Colijn and Plazzotta (2018) between unlabeled binary rooted trees and positive integers.

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; local r, h; if n = 1 then 1 else
    r := irem(n, 2); h := a((n + r)/2); (h^2 - h)/2 + a((n - r)/2) + 1 fi end:
    seq(a(n), n = 1..48); # Peter Luschny, Jun 15 2022
  • Mathematica
    a [n_] := a[n] = Module[{r, h}, If[ n == 1, 1, r = Mod[n, 2]; h = a[(n+r)/2]; (h^2-h)/2 + a[(n-r)/2] + 1]];
    Table[a[n], {n, 1, 48}] (* Jean-François Alcover, Nov 08 2023, after Peter Luschny *)
  • PARI
    \\ See links.
  • Python
    from collections import deque
    from itertools import islice
    def A354970_gen(): # generator of terms
        aqueue, f, a, b = deque([]), False, 1, 2
        yield from (1,2)
        while True:
            c = b*(b-1)//2+1+(b if f else a)
            yield c
            aqueue.append(c)
            if f: a, b = b, aqueue.popleft()
            f = not f
    A354970_list = list(islice(A354970_gen(),40)) # Chai Wah Wu, Jun 17 2022
    

Formula

a(n) = a(n/2)*(a(n/2)-1)/2 + 1 + a(n/2) for even n; a(n) = a((n+1)/2)*(a((n+1)/2)-1)/2 + 1 + a((n-1)/2) for odd n>1; a(1)=1.
Showing 1-3 of 3 results.