cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A062962 Number of divisors of n-th term of sequence a(n+1) = a(n)*(a(0) + ... + a(n)) (A001697).

Original entry on oeis.org

1, 1, 2, 4, 12, 40, 160, 792, 9408, 783360, 55987200, 35610624000, 269007298560000
Offset: 0

Views

Author

Jason Earls, Jul 22 2001

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 1; a[n_] := a[n] = a[n - 1]^2*(1 + 1/a[n - 2]); Table[DivisorSigma[0, a[n]], {n, 0, 10}]  (* Amiram Eldar, Feb 17 2019 after Jean-François Alcover at A001697 *)
  • PARI
    a(n)=if(n<2,n >= 0,a(n-1)^2*(1+1/a(n-2)));
    for(n=0,11,print1(numdiv(a(n)), ", "))

Formula

a(n) = A000005(A001697(n)). - Amiram Eldar, Feb 17 2019

Extensions

a(11) from Amiram Eldar, Feb 17 2019
a(12) from Max Alekseyev, Feb 20 2024

A039941 Alternately add and multiply.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 4, 8, 12, 96, 108, 10368, 10476, 108615168, 108625644, 11798392572168192, 11798392680793836, 139202068568601556987554268864512, 139202068568601568785946949658348, 19377215893777651167043206536157390321290709180447278572301746176
Offset: 0

Views

Author

Keywords

Crossrefs

A001696(n)=A039941(2*n), A001697(n)=A039941(2*n+1).

Programs

  • Haskell
    a039941 n = a039941_list !! (n-1)
    a039941_list = 0 : 1 : zipWith3 ($)
       (cycle [(+),(*)]) a039941_list (tail a039941_list)
    -- Reinhard Zumkeller, May 07 2012
  • Mathematica
    nxt[{n_,a_,b_}]:={n+1,b,If[EvenQ[n],a+b,a*b]}; Join[{0},Transpose[ NestList[ nxt,{0,0,1},20]][[3]]] (* Harvey P. Dale, Aug 23 2013 *)
  • PARI
    a(n)=if(n<2,n>0, if(n%2,a(n-1)*a(n-2),a(n-1)+a(n-2)))
    

Formula

a(2n) = a(2n-1) + a(2n-2); a(2n+1) = a(2n-1)*a(2n); a(0) = 0; a(1) = 1
a(n) = {a(n-1) + a(n-2), n even, a(n-1)*a(n-2), n odd}; a(0)=0; a(1)=1.

Extensions

Additional comments from Michael Somos, May 19 2000
One more term from Harvey P. Dale, Aug 23 2013

A064847 Sequence a(n) such that there is a sequence b(n) with a(1) = b(1) = 1, a(n+1) = a(n) * b(n) and b(n+1) = a(n) + b(n) for n >= 1.

Original entry on oeis.org

1, 1, 2, 6, 30, 330, 13530, 5019630, 69777876630, 351229105131280530, 24509789089304573335878465330, 8608552999157278550998626549630446732052243030
Offset: 1

Views

Author

Leroy Quet, Oct 31 2001

Keywords

Comments

Consider the mapping f(a/b) = (a + b)/(ab). Taking a = 1 and b = 1 to start with and carrying out this mapping repeatedly on each new (reduced) rational number gives the following sequence 1/1, 2/1, 3/2, 5/6, 11/30, ... The current sequence contains the denominators. - Amarnath Murthy, Mar 24 2003

Crossrefs

The b(n) sequence is A003686.
See A094303 for another version.
Cf. A001622 (golden ratio).

Programs

  • Haskell
    a064847 n = a064847_list !! (n-1)
    a064847_list = 1 : f [1,1] where
       f xs'@(x:xs) = y : f (y : xs') where y = x * sum xs
    -- Reinhard Zumkeller, Apr 29 2013
    
  • Magma
    [n le 2 select 1 else Self(n-1)*(Self(n-1)/Self(n-2) + Self(n-2)): n in [1..14]]; // Vincenzo Librandi, Dec 17 2015
  • Maple
    f:= proc(n) option remember; procname(n-1)*(procname(n-1)/procname(n-2) + procname(n-2)) end proc:
    f(1):= 1: f(2):= 1:
    map(f, [$1..16]); # Robert Israel, Jul 18 2016
  • Mathematica
    RecurrenceTable[{a[n]==a[n-1]*(a[n-1]/a[n-2] + a[n-2]), a[0]==1, a[1]==1},a,{n,0,15}] (* Vaclav Kotesovec, May 21 2015 *)
    Im[NestList[Re@#+(1+I Re@#)Im@#&, 1+I, 15]] (* Vladimir Reshetnikov, Jul 18 2016 *)
  • PARI
    { for (n=1, 18, if (n>2, a=a1*(a1/a2 + a2); a2=a1; a1=a, a=a1=a2=1); write("b064847.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 28 2009
    
  • Sage
    def A064847():
        x, y = 1, 2
        yield x
        while True:
            yield x
            x, y = x * y, x + y
    a = A064847()
    [next(a) for i in range(12)]  # Peter Luschny, Dec 17 2015
    

Formula

a(n+2) = a(n+1)*(a(n+1)/a(n) + a(n)) for n >= 1 with a(1) = a(2) = 1.
Lim_{n -> infinity} a(n)/A003686(n)^phi = 1, where phi = (1 + sqrt(5))/2 is the golden ratio. - Benoit Cloitre, May 08 2002
Denominator of b(n), where b(n) = 1/numerator(b(n-1)) + 1/denominator(b(n-1)) for n >= 2 with b(1) = 1. Cf. A003686. - Vladeta Jovovic, Aug 15 2002
a(n) ~ c^(phi^n), where c = 1.70146471458872503754529013562504670973656402413202907200954401051557047249... and phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, May 21 2015

A001696 a(n) = a(n-1)*(1 + a(n-1) - a(n-2)), a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 2, 4, 12, 108, 10476, 108625644, 11798392680793836, 139202068568601568785946949658348, 19377215893777651167043206536157529523359277782016064519251404524
Offset: 0

Views

Author

Keywords

Comments

Also, numbers remaining after the following sieving process: In step 1, keep all numbers of the set N={0,1,2,...}. In step 2, keep only every second number after a(2)=2: N'={0,1,2,4,6,8,10,...}. In step 3, keep every 4th of the numbers following a(3)=4, N"={0,1,2,4,12,20,28,...}. In step 4, keep every 12th of the numbers beyond a(4)=12: {0,1,2,4,12,108,204,...}. In step 5, keep every 108th of the numbers beyond a(5)=108: {0,1,2,4,12,108,10476,...}, and so on. The next "gap" a(n+1)-a(n) is always a(n) times the former gap, i.e., a(n+1)-a(n) = a(n)*(a(n)-a(n-1)). - M. F. Hasler, Oct 28 2010
Number of plane trees where the root has fewer than n children and the i-th child of any node has fewer than i children. - David Eppstein, Dec 18 2021

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n)=A039941(2*n); first difference sequence of this sequence is A001697. - Michael Somos, May 19 2000

Programs

  • Haskell
    a001696 n = a001696_list !! n
    a001696_list = 0 : 1 : zipWith (-)
       (zipWith (+) a001696_list' $ map (^ 2) a001696_list')
       (zipWith (*) a001696_list a001696_list')
       where a001696_list' = tail a001696_list
    -- Reinhard Zumkeller, Apr 29 2013
  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = a[n-1]*(1 + a[n-1] - a[n-2]); Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Jul 02 2013 *)
  • PARI
    a(n)=if(n<2,n>0,a(n-1)*(1+a(n-1)-a(n-2)))
    

Formula

a(n) ~ c^(2^n), where c = 1.15552822483840350150537253088299651035583896919522349372370013726451673646... . - Vaclav Kotesovec, May 21 2015
Showing 1-4 of 4 results.