A062962
Number of divisors of n-th term of sequence a(n+1) = a(n)*(a(0) + ... + a(n)) (A001697).
Original entry on oeis.org
1, 1, 2, 4, 12, 40, 160, 792, 9408, 783360, 55987200, 35610624000, 269007298560000
Offset: 0
-
a[0] = 1; a[1] = 1; a[n_] := a[n] = a[n - 1]^2*(1 + 1/a[n - 2]); Table[DivisorSigma[0, a[n]], {n, 0, 10}] (* Amiram Eldar, Feb 17 2019 after Jean-François Alcover at A001697 *)
-
a(n)=if(n<2,n >= 0,a(n-1)^2*(1+1/a(n-2)));
for(n=0,11,print1(numdiv(a(n)), ", "))
A039941
Alternately add and multiply.
Original entry on oeis.org
0, 1, 1, 1, 2, 2, 4, 8, 12, 96, 108, 10368, 10476, 108615168, 108625644, 11798392572168192, 11798392680793836, 139202068568601556987554268864512, 139202068568601568785946949658348, 19377215893777651167043206536157390321290709180447278572301746176
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..27
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
-
a039941 n = a039941_list !! (n-1)
a039941_list = 0 : 1 : zipWith3 ($)
(cycle [(+),(*)]) a039941_list (tail a039941_list)
-- Reinhard Zumkeller, May 07 2012
-
nxt[{n_,a_,b_}]:={n+1,b,If[EvenQ[n],a+b,a*b]}; Join[{0},Transpose[ NestList[ nxt,{0,0,1},20]][[3]]] (* Harvey P. Dale, Aug 23 2013 *)
-
a(n)=if(n<2,n>0, if(n%2,a(n-1)*a(n-2),a(n-1)+a(n-2)))
A064847
Sequence a(n) such that there is a sequence b(n) with a(1) = b(1) = 1, a(n+1) = a(n) * b(n) and b(n+1) = a(n) + b(n) for n >= 1.
Original entry on oeis.org
1, 1, 2, 6, 30, 330, 13530, 5019630, 69777876630, 351229105131280530, 24509789089304573335878465330, 8608552999157278550998626549630446732052243030
Offset: 1
-
a064847 n = a064847_list !! (n-1)
a064847_list = 1 : f [1,1] where
f xs'@(x:xs) = y : f (y : xs') where y = x * sum xs
-- Reinhard Zumkeller, Apr 29 2013
-
[n le 2 select 1 else Self(n-1)*(Self(n-1)/Self(n-2) + Self(n-2)): n in [1..14]]; // Vincenzo Librandi, Dec 17 2015
-
f:= proc(n) option remember; procname(n-1)*(procname(n-1)/procname(n-2) + procname(n-2)) end proc:
f(1):= 1: f(2):= 1:
map(f, [$1..16]); # Robert Israel, Jul 18 2016
-
RecurrenceTable[{a[n]==a[n-1]*(a[n-1]/a[n-2] + a[n-2]), a[0]==1, a[1]==1},a,{n,0,15}] (* Vaclav Kotesovec, May 21 2015 *)
Im[NestList[Re@#+(1+I Re@#)Im@#&, 1+I, 15]] (* Vladimir Reshetnikov, Jul 18 2016 *)
-
{ for (n=1, 18, if (n>2, a=a1*(a1/a2 + a2); a2=a1; a1=a, a=a1=a2=1); write("b064847.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 28 2009
-
def A064847():
x, y = 1, 2
yield x
while True:
yield x
x, y = x * y, x + y
a = A064847()
[next(a) for i in range(12)] # Peter Luschny, Dec 17 2015
A001696
a(n) = a(n-1)*(1 + a(n-1) - a(n-2)), a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 2, 4, 12, 108, 10476, 108625644, 11798392680793836, 139202068568601568785946949658348, 19377215893777651167043206536157529523359277782016064519251404524
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- John Cerkan, Table of n, a(n) for n = 0..13
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- Index entries for sequences of form a(n+1)=a(n)^2 + ...
-
a001696 n = a001696_list !! n
a001696_list = 0 : 1 : zipWith (-)
(zipWith (+) a001696_list' $ map (^ 2) a001696_list')
(zipWith (*) a001696_list a001696_list')
where a001696_list' = tail a001696_list
-- Reinhard Zumkeller, Apr 29 2013
-
a[0] = 0; a[1] = 1; a[n_] := a[n] = a[n-1]*(1 + a[n-1] - a[n-2]); Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Jul 02 2013 *)
-
a(n)=if(n<2,n>0,a(n-1)*(1+a(n-1)-a(n-2)))
Showing 1-4 of 4 results.
Comments