A086105
Adding, multiplying and exponentiating cycle of the previous two terms similar to A039941.
Original entry on oeis.org
0, 1, 1, 1, 1, 2, 2, 4, 6, 24, 4738381338321616896, 4738381338321616920, 22452257707354557353808363243511480320
Offset: 1
Anthony Peterson (civ2buf(AT)ricochet.com), Jul 09 2003
a(11) = a(9)^a(10)=6^24 because 11 mod 3 is 2.
-
nxt[{n_,a_,b_}]:={n+1,b,Which[Mod[n+1,3]==0,a+b,Mod[n+1,3]==1,a*b,True,a^b]}; NestList[ nxt,{2,0,1},12][[;;,2]] (* Harvey P. Dale, Oct 04 2023 *)
The next 2 terms are (6^24)^((6^24)*(6^24+24)) and (6^24)^((6^24) * (6^24 + 24)) + (6^24) * (6^24 + 24).
Original entry on oeis.org
0, 1, 1, 1, 2, 2, 4, 8, 12, 96, 108, 10368, 10476, 108615168, 108625644
Offset: 0
A001696
a(n) = a(n-1)*(1 + a(n-1) - a(n-2)), a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 2, 4, 12, 108, 10476, 108625644, 11798392680793836, 139202068568601568785946949658348, 19377215893777651167043206536157529523359277782016064519251404524
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- John Cerkan, Table of n, a(n) for n = 0..13
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- Index entries for sequences of form a(n+1)=a(n)^2 + ...
-
a001696 n = a001696_list !! n
a001696_list = 0 : 1 : zipWith (-)
(zipWith (+) a001696_list' $ map (^ 2) a001696_list')
(zipWith (*) a001696_list a001696_list')
where a001696_list' = tail a001696_list
-- Reinhard Zumkeller, Apr 29 2013
-
a[0] = 0; a[1] = 1; a[n_] := a[n] = a[n-1]*(1 + a[n-1] - a[n-2]); Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Jul 02 2013 *)
-
a(n)=if(n<2,n>0,a(n-1)*(1+a(n-1)-a(n-2)))
A001697
a(n+1) = a(n)(a(0) + ... + a(n)).
Original entry on oeis.org
1, 1, 2, 8, 96, 10368, 108615168, 11798392572168192, 139202068568601556987554268864512, 19377215893777651167043206536157390321290709180447278572301746176
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- John Cerkan, Table of n, a(n) for n = 0..12
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- Daniel Duverney, Takeshi Kurosawa, Iekata Shiokawa, Transformation formulas of finite sums into continued fractions, arXiv:1912.12565 [math.NT], 2019.
- Index entries for sequences of form a(n+1)=a(n)^2 + ...
- Index to divisibility sequences
a(n) =
A039941(2*n+1); first differences of
A001696 give this sequence.
-
a001697 n = a001697_list !! n
a001697_list = 1 : 1 : f [1,1] where
f xs@(x:_) = y : f (y : xs) where y = x * sum xs
-- Reinhard Zumkeller, Apr 29 2013
-
[n le 2 select 1 else Self(n-1)^2*(1+1/Self(n-2)): n in [1..12]]; // Vincenzo Librandi, Nov 25 2015
-
a[0] = 1; a[1] = 1; a[n_] := a[n] = a[n - 1]^2*(1 + 1/a[n - 2]); Table[a[n], {n, 0, 9}] (* Jean-François Alcover, Jul 02 2013 *)
nxt[{t_,a_}]:={t+t*a,t*a}; Transpose[NestList[nxt,{1,1},10]][[2]] (* Harvey P. Dale, Jan 24 2016 *)
-
a(n)=if(n<2,n >= 0,a(n-1)^2*(1+1/a(n-2)))
A045761
Define polynomials Pn by P0 = 0, P1 = x, P2 = P1 + P0, P3 = P2 * P1, P4 = P3 + P2, etc. alternately adding or multiplying. For even n > 2k, then first k coefficients of Pn remain unchanged and their values are the first k terms of the sequence.
Original entry on oeis.org
0, 1, 1, 1, 2, 3, 6, 12, 24, 50, 107, 232, 508, 1124, 2513, 5665, 12858, 29356, 67371, 155345, 359733, 836261, 1950829, 4565305, 10714501, 25212843, 59474318, 140609809, 333126672, 790764280, 1880489541, 4479494059, 10687448937, 25536624382, 61102431113
Offset: 0
James Boudinot (jboudinot(AT)yahoo.com)
The sequence of polynomials is 0, x, x, x^2, x^2 + x, x^4 + x^3, x^4 + x^3 + x^2 + x, ..., and after this all the even polynomials end with x^3 + x^2 + x (+ 0), so the first 4 terms of the sequence are these coefficients (in ascending order): 0, 1, 1, 1. - _Michael B. Porter_, Aug 09 2016
-
k = 32; P[0] = 0; P[1] = x;
P[n_] := P[n] = If[EvenQ[n], P[n-1] + P[n-2], P[n-1]*P[n-2]] + O[x]^(2k+1) // Normal;
CoefficientList[P[2k], x][[1 ;; k+1]] (* Jean-François Alcover, Aug 07 2016 *)
A077753
a(1) = 1, a(2) = 2, a(2n) = a(2n-1)*a(2n-2), a(2n+1)= a(2n-1) + a(2n).
Original entry on oeis.org
1, 2, 3, 6, 9, 54, 63, 3402, 3465, 11787930, 11791395, 138996138862350, 138996150653745, 19319928257600060753067000750, 19319928257600199749217654495, 373259627878816004843210480238884928715510929499405871250
Offset: 1
A248479
a(1) = 1, a(2) = 3, and from then on alternatively subtract and multiply two previous terms.
Original entry on oeis.org
1, 3, 2, 6, 4, 24, 20, 480, 460, 220800, 220340, 48651072000, 48650851660, 2366916086971979520000, 2366916086923328668340, 5602291762651594835806920193095352396800000, 5602291762651594835804553277008429068131660, 31385672993873913406017018916292673201543291913142263413575757282059524278962688000000
Offset: 1
-
a248479 n = a248479_list !! (n-1)
a248479_list = 1 : 3 : zipWith ($) (map uncurry $ cycle [(-), (*)])
(zip (tail a248479_list) a248479_list)
-- Reinhard Zumkeller, Oct 28 2014
-
a:= proc(n) option remember;
piecewise(n::odd, a(n-1)-a(n-2), a(n-1)*a(n-2))
end proc:
a(1):= 1: a(2):= 3:
seq(a(n),n=1..20); # Robert Israel, Oct 27 2014
-
nxt[{n_,a_,b_}]:={n+1,b,If[EvenQ[n],b-a,b*a]}; NestList[nxt,{2,1,3},20][[All,2]] (* Harvey P. Dale, Jul 31 2018 *)
-
v=[1,3];for(n=1,20,if(n%2,v=concat(v,v[#v]-v[#v-1]));if(!(n%2),v=concat(v,v[#v]*v[#v-1])));v \\ Derek Orr, Oct 26 2014
-
(definec (A248479 n) (cond ((= 1 n) 1) ((= 2 n) 3) ((odd? n) (- (A248479 (- n 1)) (A248479 (- n 2)))) (else (* (A248479 (- n 1)) (A248479 (- n 2))))))
;; A memoizing definec-macro can be found from http://oeis.org/wiki/Memoization - Antti Karttunen, Oct 26 2014
One term corrected and additional terms added by
Colin Barker, Oct 07 2014
A122961
Alternately form product and sum of all previous terms.
Original entry on oeis.org
1, 1, 1, 3, 3, 9, 81, 99, 649539, 649737, 274124633198656977, 274124633199956451, 20598907656583661830059012023854018733151994905840579, 20598907656583661830059012023854019281401261305753481
Offset: 1
-
first(n) = my(res = vector(n, i, 1)); for(x=4, n, res[x]=if(x%2, prod(i=1, x-1, res[i]), sum(i=1, x-1, res[i]))); res \\ Iain Fox, Oct 29 2018
-
first(n) = my(res = vector(n, i, 1)); for(x=4, n, res[x]=if(x%2, res[x-1]*res[x-2]^2, res[x-1]+2*res[x-2])); res \\ Iain Fox, Oct 29 2018
A320603
a(0) = 1; if n is odd, a(n) = Product_{i=0..n-1} a(i); if n is even, a(n) = Sum_{i=0..n-1} a(i).
Original entry on oeis.org
1, 1, 2, 2, 6, 24, 36, 20736, 20808, 8947059130368, 8947059171984, 716210897494804754044764041567551881216, 716210897494804754044764059461670225184
Offset: 0
5 is odd, so a(5) = 1 * 1 * 2 * 2 * 6 = 24.
6 is even, so a(6) = 1 + 1 + 2 + 2 + 6 + 24 = 36.
Product of previous terms:
A165420.
-
a[0]:= 1; a[n_]:= If[OddQ[n], Product[a[j], {j,0,n-1}], Sum[a[j], {j,0,n -1}]]; Table[a[n], {n, 0, 15}] (* G. C. Greubel, Oct 19 2018 *)
-
first(n) = my(res = vector(n, i, 1)); for(x=3, n, res[x]=if(x%2, sum(i=1, x-1, res[i]), prod(i=1, x-1, res[i]))); res
-
first(n) = my(res = vector(n, i, 1)); res[3]++; for(x=4, n, res[x]=if(x%2, res[x-1]+2*res[x-2], res[x-1]*res[x-2]^2)); res
Showing 1-9 of 9 results.
Comments