cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005638 Number of unlabeled trivalent (or cubic) graphs with 2n nodes.

Original entry on oeis.org

1, 0, 1, 2, 6, 21, 94, 540, 4207, 42110, 516344, 7373924, 118573592, 2103205738, 40634185402, 847871397424, 18987149095005, 454032821688754, 11544329612485981, 310964453836198311, 8845303172513781271
Offset: 0

Views

Author

Keywords

Comments

Because the triangle A051031 is symmetric, a(n) is also the number of (2n-4)-regular graphs on 2n vertices.

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000421.
Row sums of A275744.
3-regular simple graphs: A002851 (connected), A165653 (disconnected), this sequence (not necessarily connected).
Regular graphs A005176 (any degree), A051031 (triangular array), chosen degrees: A000012 (k=0), A059841 (k=1), A008483 (k=2), this sequence (k=3), A033301 (k=4), A165626 (k=5), A165627 (k=6), A165628 (k=7), A180260 (k=8).
Not necessarily connected 3-regular simple graphs with girth *at least* g: this sequence (g=3), A185334 (g=4), A185335 (g=5), A185336 (g=6).
Not necessarily connected 3-regular simple graphs with girth *exactly* g: A185133 (g=3), A185134 (g=4), A185135 (g=5), A185136 (g=6).

Formula

a(n) = A002851(n) + A165653(n).
This sequence is the Euler transformation of A002851.

Extensions

More terms from Ronald C. Read.
Comment, formulas, and (most) crossrefs by Jason Kimberley, 2009 and 2012