cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A002785 Number of self-complementary oriented graphs with n nodes.

Original entry on oeis.org

1, 1, 2, 2, 8, 12, 88, 176, 2752, 8784, 279968, 1492288, 95458560, 872687552, 111698291584, 1787154671104, 457509297625088, 13013584213369088, 6662951988432581120, 341143107490935724032, 349330527429800077778944, 32519496073514216703585280
Offset: 1

Views

Author

Keywords

Comments

Also, self-converse tournaments. - Brendan McKay, Dec 31 2020
Farrugia's Chapter 8 on enumeration of self-complementary and self-converse graphs and digraphs contains many explicit formulas as well as an in-depth discussion of the literature on this subject. - Pab Ter (pabrlos2(AT)yahoo.com), Oct 22 2005

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(combinat, partition): j:=proc(p) local k, jpart: jpart:=[seq(0,k=1..max(op(p)))]: for k from 1 to nops(p) do jpart[p[k]]:=jpart[p[k]]+1 od: RETURN(jpart): end; numeven:=jtot->2^add(add((2*igcd(r,t)*jtot[r]*jtot[t]),r=1..t-1)+(t*jtot[t]^2-jtot[t]),t=1..nops(jtot)); numodd:=jtot->mul(mul(2^(igcd(r,t)*jtot[r]*jtot[t]),r=1..nops(jtot)),t=1..nops(jtot));den:=jtot->mul(k^jtot[k]*jtot[k]!,k=1..nops(jtot)); testj:=proc(jtot) local i: for i from 1 to floor(nops(jtot)/2) do if(jtot[2*i]<>0) then RETURN(0) fi od: RETURN(1) end; teven:=proc(n) local s,part,k,p,jtot: s:=0: part:=partition(n): for k from 1 to nops(part) do p:=part[k]: jtot:=j(p): if testj(jtot)=1 then s:=s+numeven(jtot)/den(jtot) fi od:RETURN(s): end; todd:=proc(n) local s,part,k,p,jtot: s:=0: part:=partition(n): for k from 1 to nops(part) do p:=part[k]: jtot:=j(p): if testj(jtot)=1 then s:=s+numodd(jtot)/den(jtot) fi od:RETURN(s): end; seq(op([todd(n),teven(n+1)]),n=1..12); (Pab Ter)
  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := 2*Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i-1}], {i, 2, Length[v]}]+Total[v];
    oddp[v_] := Module[{i}, For[i = 1, i <= Length[v], i++, If[BitAnd[v[[i]], 1] == 0, Return[0]]]; 1];
    a[n_] := Module[{s = 0}, Do[If[oddp[p] == 1, s += permcount[2*p]*2^edges[p]*If[OddQ[n], n*2^Length[p], 1]], {p, IntegerPartitions[Quotient[n, 2]]}]; s/n!];
    Array[a, 22] (* Jean-François Alcover, Jan 07 2021, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {2*sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, v[i])}
    oddp(v) = {for(i=1, #v, if(bitand(v[i], 1)==0, return(0))); 1}
    a(n) = {my(s=0); forpart(p=n\2, if(oddp(p), s+=permcount(2*Vec(p)) * 2^edges(p) * if(n%2, n*2^#p, 1))); s/n!} \\ Andrew Howroyd, Sep 16 2018

Formula

a(2*n) = Sum_{j partition of n & jk=0 if k even} [ Product_{k} 2^(k*jk^2-jk) * Product_{r

Extensions

More terms from Pab Ter (pabrlos2(AT)yahoo.com), Oct 22 2005
a(1)-a(2) prepended by Andrew Howroyd, Sep 16 2018

A054934 Number of oriented graphs on n nodes up to reversing the arcs.

Original entry on oeis.org

1, 2, 6, 30, 342, 11164, 1077370, 287640989, 207974848520, 408004023529326, 2187203136795598146, 32269918474347692838600, 1318898367787065334889143452, 150182948079490899321955309512894, 47886343174490577986560743878301096450, 42944209124580582731273744197913175367709988
Offset: 1

Author

N. J. A. Sloane, May 24 2000

Keywords

Crossrefs

Programs

Formula

Average of A001174 and A005639.

Extensions

More terms from Philip Sung (phil(AT)main.nu), May 07 2001
Terms a(15) and beyond from Andrew Howroyd, Sep 16 2018
Showing 1-2 of 2 results.