cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A003086 Number of self-complementary digraphs with n nodes.

Original entry on oeis.org

1, 1, 4, 10, 136, 720, 44224, 703760, 179228736, 9168331776, 9383939974144, 1601371799340544, 6558936236286040064, 3837878966366932639744, 62879572771326489528942592, 128777257564337108286016980992
Offset: 1

Views

Author

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 140, 243.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Table[GraphPolynomial[n,x,Directed]/.x -> -1,{n,1,20}]  (* Geoffrey Critzer, Oct 21 2012 *)
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := 4 Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i - 1}], {i, 2, Length[v]}] + Sum[2 v[[i]] - 1, {i, 1, Length[v]}];
    a[n_] := (s = 0; Do[s += permcount[2 p]*2^edges[p]*If[OddQ[n], n *4^Length[p], 1], {p, IntegerPartitions[n/2 // Floor]}]; s/n!);
    Array[a, 16] (* Jean-François Alcover, Aug 26 2019, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {4*sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, 2*v[i]-1)}
    a(n) = {my(s=0); forpart(p=n\2, s+=permcount(2*Vec(p))*2^edges(p)*if(n%2, n*4^#p, 1)); s/n!} \\ Andrew Howroyd, Sep 16 2018

Extensions

More terms from Ronald C. Read and Vladeta Jovovic.

A005639 Number of self-converse oriented graphs with n nodes.

Original entry on oeis.org

1, 2, 5, 18, 102, 848, 12452, 265759, 10454008, 598047612, 63620448978, 9974635937844, 2905660724913768, 1268590412128132389, 1023130650177394611897, 1258149993547327488275562, 2834863110716120144290954314, 9900859865505110360978721901778
Offset: 1

Views

Author

Keywords

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • R. W. Robinson, Asymptotic number of self-converse oriented graphs, pp. 255-266 of Combinatorial Mathematics (Canberra, 1977), Lect. Notes Math. 686, 1978.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002785.

Programs

  • Mathematica
    permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[Sum[If[Mod[v[[i]] v[[j]], 2] == 0, GCD[v[[i]], v[[j]]], 0], {j, 1, i - 1}], {i, 2, Length[v]}] + Sum[If[Mod[v[[i]], 2] == 0, 2 Quotient[v[[i]] - 2, 4] + 1, 0], {i, 1, Length[v]}];
    a[n_] := Module[{s = 0}, Do[s += permcount[p]*3^edges[p], {p, IntegerPartitions[n]}]; s/n!];
    Array[a, 18] (* Jean-François Alcover, Aug 17 2019, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, if(v[i]*v[j]%2==0, gcd(v[i],v[j])))) + sum(i=1, #v, if(v[i]%2==0, (v[i]-2)\4*2+1))}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)); s/n!} \\ Andrew Howroyd, Sep 16 2018

A059735 Number of complementary pairs of tournaments on n nodes.

Original entry on oeis.org

1, 1, 2, 3, 10, 34, 272, 3528, 97144, 4870920, 452016608, 77054901728, 24271105072736, 14200712295904928, 15510501136026729216, 31765207922047709885696, 122456389219489134370435456, 891699423142395494501906828160, 12302820585630191716774996205431296
Offset: 1

Views

Author

N. J. A. Sloane, Feb 09 2001

Keywords

Crossrefs

Programs

Formula

Average of A000568 and A002785.

Extensions

More terms from Pab Ter (pabrlos2(AT)yahoo.com), Nov 06 2005
Terms a(18) and beyond from Andrew Howroyd, Sep 17 2018
Showing 1-3 of 3 results.