cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005648 Number of 2n-bead black-white reversible necklaces with n black beads.

Original entry on oeis.org

1, 1, 2, 3, 8, 16, 50, 133, 440, 1387, 4752, 16159, 56822, 200474, 718146, 2587018, 9398520, 34324174, 126068558, 465093571, 1723176308, 6407924300, 23910576230, 89494164973, 335913918902, 1264107416466
Offset: 0

Views

Author

Keywords

Comments

a(n) is the coefficient of c_1^n*c_2^n in the cycle index polynomial for the dihedral group D_{2*n} evaluated with the figure counting polynomial c = c_1 + c_2, n>=1, abbreviated as Z(D_{2*n},c). See, e.g., the Harary-Palmer reference (given under A212355), p. 42, Theorem (PET), and the example for all 6 two-colored 4-bracelets (called there necklaces) on p. 44, Figure 2.4.2. - Wolfdieter Lang, Jun 05 2012

Examples

			a(2) = 2: BBWW, BWBW.
a(3) = 3: BBBWWW, BBWBWW, BWBWBW.
a(4) = 8: BBBBWWWW, BBBWBWWW, BBBWWBWW, BBWWBBWW, BBWBWBWW, BBWBWWBW, BBWBBWWW, BWBWBWBW.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    f[k_Integer, n_] := (Plus @@ (EulerPhi[ # ]Binomial[n/#, k/# ] & /@ Divisors[GCD[n, k]])/n + Binomial[(n - If[OddQ@n, 1, If[OddQ@k, 2, 0]])/2, (k - If[OddQ@k, 1, 0])/2])/2 (* Robert A. Russell, Sep 27 2004 *)
    Table[ f[n, 2n], {n, 27}] (* Robert G. Wilson v, Mar 29 2006 *)
    a[0] = 1; a[n_] := 1/2*(Binomial[2*Quotient[n, 2], Quotient[n, 2]] + DivisorSum[n, EulerPhi[#]*Binomial[2*n/#, n/#]&]/(2*n)); Array[a, 26, 0] (* Jean-François Alcover, Nov 05 2017, translated from PARI *)
  • PARI
    a(n) = 1/2*( binomial(2*(n\2), n\2) + if(n<1, n >= 0, sumdiv(n, k, eulerphi(k)*binomial(2*n/k, n/k))/(2*n) ));

Formula

a(n) = ( Sum_{d|n} phi(n/d)*C(2*d, d) )/(4*n) + C(2*k, k)/2, where k = floor(n/2). - Michael Somos
a(n) = (A003239(n) + C(2*k, k))/2, where k = [ n/2 ]. - R. J. Fletcher, (yylee(AT)mail.ncku.edu.tw)

Extensions

Sequence extended and description corrected by Christian G. Bower
Example n=8 (word no. 6) corrected by Wolfdieter Lang, Jun 05 2012