A005652 Lexicographically least increasing sequence, starting with 1, such that the sum of 2 distinct terms is never a Fibonacci number.
1, 3, 6, 8, 9, 11, 14, 16, 17, 19, 21, 22, 24, 27, 29, 30, 32, 35, 37, 40, 42, 43, 45, 48, 50, 51, 53, 55, 56, 58, 61, 63, 64, 66, 69, 71, 74, 76, 77, 79, 82, 84, 85, 87, 90, 92, 95, 97, 98, 100, 103, 105, 106, 108, 110, 111, 113, 116, 118, 119, 121, 124, 126, 129, 131
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- K. Alladi et al., On additive partitions of integers, Discrete Math., 22 (1978), 201-211.
- T. Y. Chow and C. D. Long, Additive partitions and continued fractions, Ramanujan J., 3 (1999), 55-72 [set alpha=(1+sqrt(5))/2 in Theorem 2 to get A005652 and A005653].
- Primoz Pirnat, Mathematica program
Programs
-
Mathematica
f[n_] := Block[{k = Floor[n/GoldenRatio]}, If[n - k*GoldenRatio > (k + 1)*GoldenRatio - n, 1, 0]]; Select[ Range[131], f[ # ] == 1 &] r = (1 + Sqrt[5])/2; z = 300; t = Table[Floor[2 n*r] - 2 Floor[n*r], {n, 1, z}] (* {A078588(n) : n > 0} *) Flatten[Position[t, 0]] (* A005653 *) Flatten[Position[t, 1]] (* this sequence *) (* Clark Kimberling and Jianing Song, Sep 10 2019 *) r = GoldenRatio; t = Table[If[FractionalPart[n*r] < 1/2, 0, 1 ], {n, 1, 120}] (* {A078588(n) : n > 0} *) Flatten[Position[t, 0]] (* A005653 *) Flatten[Position[t, 1]] (* this sequence *) (* Clark Kimberling and Jianing Song, Sep 12 2019 *)
Formula
The set of all k such that the integer multiple of (1+sqrt(5))/2 nearest k is greater than k (Chow-Long).
Numbers k such that 2*{k*phi} - {2k*phi} = 1, where { } denotes fractional part. - Clark Kimberling, Jan 01 2007
Extensions
Extended by Robert G. Wilson v, Dec 02 2002
Definition clarified by Jeffrey Shallit, Nov 19 2023
Comments