A120847 Klarner-Rado primes. Primes in A005658.
2, 5, 17, 29, 47, 53, 83, 89, 101, 173, 191, 251, 263, 269, 281, 317, 431, 467, 479, 521, 587, 659, 809, 857, 911, 929, 947, 953, 983, 1019, 1091, 1163, 1307, 1439, 1451, 1493, 1559, 1601, 1613, 1667, 1811, 1847, 1871, 1901, 1979, 2027, 2063, 2099, 2207, 2243
Offset: 1
Links
- R. J. Mathar and Robert Israel, Table of n, a(n) for n = 1..7948 (1..493 from Mathar)
Programs
-
MATLAB
N = 10^4; A = zeros(1,N); todo = [1]; A(1) = 1; while numel(todo) > 0 x = todo(1); todo = todo(2:end); Y = [2*x,3*x+2,6*x+3]; Y = Y(Y <= N); Y = Y(A(Y) == 0); A(Y) = 1; todo = [todo, Y]; end; S = find(A==1); S(isprime(S)) % Robert Israel, Jun 17 2015
-
Maple
N:= 3000: # to get all terms <= N A:= Vector(N): A[1]:= 1: todo:= {1}: while todo <> {} do x:= todo[1]; todo:= todo[2..-1]; Y:= select(t -> (t <= N and A[t] = 0),[2*x,3*x+2, 6*x+3]); A[Y]:= 1; todo:= todo union convert(Y,set); od: select(t -> A[t]=1 and isprime(t), [$1..N]); # Robert Israel, Jun 17 2015
-
PARI
has(n)=if(n<3, return(n>0)); my(k=n%6); if(k==3, return(has(n\6))); if(k==1, return(0)); if(k==5, return(has(n\3))); if(k!=2, return(has(n/2))); has(n\3) || has(n/2) print1(2); forprime(p=5,1e5, if(p%3==2 && has(p\3), print1(", "p))) \\ Charles R Greathouse IV, Sep 15 2015
Formula
A000040 INTERSECTION {sequence starting with 1 and such that if n appears so do 2n, 3n+2, 6n+3}.
Extensions
More terms from R. J. Mathar, Aug 20 2006
Comments