cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005687 Number of Twopins positions.

Original entry on oeis.org

1, 2, 4, 6, 9, 14, 22, 36, 57, 90, 139, 214, 329, 506, 780, 1200, 1845, 2830, 4337, 6642, 10170, 15572, 23838, 36486, 55828, 85408, 130641, 199814, 305599, 467366, 714735, 1092980, 1671335, 2555650, 3907781, 5975202, 9136288, 13969560, 21359528
Offset: 7

Views

Author

Keywords

References

  • R. K. Guy, ``Anyone for Twopins?,'' in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    a:= n-> (Matrix(10, (i,j)-> if (i=j-1) then 1 elif j=1 then [2,0,-2,1,2,-2,0,0,0,-1][i] else 0 fi)^n)[1,8]: seq(a(n), n=7..70); # Alois P. Heinz, Aug 14 2008
  • Mathematica
    LinearRecurrence[{2, 0, -2, 1, 2, -2, 0, 0, 0, -1}, {1, 2, 4, 6, 9, 14, 22, 36, 57, 90}, 40] (* Jean-François Alcover, Nov 12 2015 *)

Formula

G.f.: x^7/((1-x^2-x^5)*(1-2*x+x^2-x^5)). - Simon Plouffe in his 1992 dissertation.
2*a(n) = A005253(n-2) - A005686(n). - R. J. Mathar, May 29 2019

Extensions

More terms from Alois P. Heinz, Aug 14 2008